litellm-mirror/litellm/tests/test_loadtest_router.py
2023-11-14 18:55:08 -08:00

63 lines
2.1 KiB
Python

import sys, os
import traceback
from dotenv import load_dotenv
import copy
load_dotenv()
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import asyncio
from litellm import Router
async def call_acompletion(semaphore, router: Router, input_data):
async with semaphore:
# Replace 'input_data' with appropriate parameters for acompletion
response = await router.acompletion(**input_data)
# Handle the response as needed
return response
async def main():
# Initialize the Router
model_list= [{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION")
},
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION")
},
}]
router = Router(model_list=model_list, num_retries=3)
# Create a semaphore with a capacity of 100
semaphore = asyncio.Semaphore(100)
# List to hold all task references
tasks = []
# Launch 1000 tasks
for _ in range(100):
task = asyncio.create_task(call_acompletion(semaphore, router, {"model": "gpt-3.5-turbo", "messages": [{"role":"user", "content": "Hey, how's it going?"}]}))
tasks.append(task)
# Wait for all tasks to complete
responses = await asyncio.gather(*tasks)
# Process responses as needed
print(f"NUMBER OF COMPLETED TASKS: {len(responses)}")
# Run the main function
asyncio.run(main())