mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
443 lines
17 KiB
Python
443 lines
17 KiB
Python
import os, openai, cohere, replicate, sys
|
|
from typing import Any
|
|
from func_timeout import func_set_timeout, FunctionTimedOut
|
|
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
|
import json
|
|
import traceback
|
|
import threading
|
|
import dotenv
|
|
import traceback
|
|
import subprocess
|
|
import uuid
|
|
|
|
####### ENVIRONMENT VARIABLES ###################
|
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
|
set_verbose = False
|
|
sentry_sdk_instance = None
|
|
capture_exception = None
|
|
add_breadcrumb = None
|
|
posthog = None
|
|
slack_app = None
|
|
alerts_channel = None
|
|
success_callback = []
|
|
failure_callback = []
|
|
callback_list = []
|
|
user_logger_fn = None
|
|
additional_details = {}
|
|
|
|
## Set verbose to true -> ```litellm.verbose = True```
|
|
def print_verbose(print_statement):
|
|
if set_verbose:
|
|
print(f"LiteLLM: {print_statement}")
|
|
print("Get help - https://discord.com/invite/wuPM9dRgDw")
|
|
|
|
####### COMPLETION MODELS ###################
|
|
open_ai_chat_completion_models = [
|
|
'gpt-3.5-turbo',
|
|
'gpt-4'
|
|
]
|
|
open_ai_text_completion_models = [
|
|
'text-davinci-003'
|
|
]
|
|
|
|
cohere_models = [
|
|
'command-nightly',
|
|
]
|
|
|
|
anthropic_models = [
|
|
"claude-2",
|
|
"claude-instant-1"
|
|
]
|
|
|
|
####### EMBEDDING MODELS ###################
|
|
open_ai_embedding_models = [
|
|
'text-embedding-ada-002'
|
|
]
|
|
|
|
####### CLIENT ################### make it easy to log completion/embedding runs
|
|
def client(original_function):
|
|
def function_setup(): #just run once to check if user wants to send their data anywhere
|
|
try:
|
|
if len(success_callback) > 0 or len(failure_callback) > 0 and len(callback_list) == 0:
|
|
callback_list = list(set(success_callback + failure_callback))
|
|
set_callbacks(callback_list=callback_list)
|
|
except: # DO NOT BLOCK running the function because of this
|
|
print_verbose(f"[Non-Blocking] {traceback.format_exc()}")
|
|
pass
|
|
|
|
def wrapper(*args, **kwargs):
|
|
# Code to be executed before the embedding function
|
|
try:
|
|
function_setup()
|
|
## EMBEDDING CALL
|
|
result = original_function(*args, **kwargs)
|
|
## LOG SUCCESS
|
|
my_thread = threading.Thread(target=handle_success, args=(args, kwargs)) # don't interrupt execution of main thread
|
|
my_thread.start()
|
|
return result
|
|
except Exception as e:
|
|
traceback_exception = traceback.format_exc()
|
|
my_thread = threading.Thread(target=handle_failure, args=(e, traceback.format_exc(), args, kwargs)) # don't interrupt execution of main thread
|
|
my_thread.start()
|
|
raise e
|
|
return wrapper
|
|
|
|
####### COMPLETION ENDPOINTS ################
|
|
#############################################
|
|
@client
|
|
@func_set_timeout(60, allowOverride=True) ## https://pypi.org/project/func-timeout/ - timeouts, in case calls hang (e.g. Azure)
|
|
def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False, logger_fn=None): # ,*,.. requires optional params like forceTimeout, azure and logger_fn to be passed in as keyword arguments
|
|
try:
|
|
if azure == True:
|
|
# azure configs
|
|
openai.api_type = "azure"
|
|
openai.api_base = os.environ.get("AZURE_API_BASE")
|
|
openai.api_version = os.environ.get("AZURE_API_VERSION")
|
|
openai.api_key = os.environ.get("AZURE_API_KEY")
|
|
## LOGGING
|
|
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
response = openai.ChatCompletion.create(
|
|
engine=model,
|
|
messages = messages
|
|
)
|
|
elif "replicate" in model:
|
|
# replicate defaults to os.environ.get("REPLICATE_API_TOKEN")
|
|
# checking in case user set it to REPLICATE_API_KEY instead
|
|
if not os.environ.get("REPLICATE_API_TOKEN") and os.environ.get("REPLICATE_API_KEY"):
|
|
replicate_api_token = os.environ.get("REPLICATE_API_KEY")
|
|
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
|
|
prompt = " ".join([message["content"] for message in messages])
|
|
input = {"prompt": prompt}
|
|
if max_tokens:
|
|
input["max_length"] = max_tokens # for t5 models
|
|
input["max_new_tokens"] = max_tokens # for llama2 models
|
|
## LOGGING
|
|
logging(model=model, input=input, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
output = replicate.run(
|
|
model,
|
|
input=input)
|
|
response = ""
|
|
for item in output:
|
|
response += item
|
|
new_response = {
|
|
"choices": [
|
|
{
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"message": {
|
|
"content": response,
|
|
"role": "assistant"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
response = new_response
|
|
elif model in anthropic_models:
|
|
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
|
|
prompt = f"{HUMAN_PROMPT}"
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{HUMAN_PROMPT}{message['content']}"
|
|
else:
|
|
prompt += f"{AI_PROMPT}{message['content']}"
|
|
else:
|
|
prompt += f"{HUMAN_PROMPT}{message['content']}"
|
|
prompt += f"{AI_PROMPT}"
|
|
anthropic = Anthropic()
|
|
if max_tokens:
|
|
max_tokens_to_sample = max_tokens
|
|
else:
|
|
max_tokens_to_sample = 300 # default in Anthropic docs https://docs.anthropic.com/claude/reference/client-libraries
|
|
## LOGGING
|
|
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
completion = anthropic.completions.create(
|
|
model=model,
|
|
prompt=prompt,
|
|
max_tokens_to_sample=max_tokens_to_sample
|
|
)
|
|
new_response = {
|
|
"choices": [
|
|
{
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"message": {
|
|
"content": completion.completion,
|
|
"role": "assistant"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
print_verbose(f"new response: {new_response}")
|
|
response = new_response
|
|
elif model in cohere_models:
|
|
cohere_key = os.environ.get("COHERE_API_KEY")
|
|
co = cohere.Client(cohere_key)
|
|
prompt = " ".join([message["content"] for message in messages])
|
|
## LOGGING
|
|
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
response = co.generate(
|
|
model=model,
|
|
prompt = prompt
|
|
)
|
|
new_response = {
|
|
"choices": [
|
|
{
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"message": {
|
|
"content": response[0],
|
|
"role": "assistant"
|
|
}
|
|
}
|
|
],
|
|
}
|
|
response = new_response
|
|
|
|
elif model in open_ai_chat_completion_models:
|
|
openai.api_type = "openai"
|
|
openai.api_base = "https://api.openai.com/v1"
|
|
openai.api_version = None
|
|
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
|
## LOGGING
|
|
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
response = openai.ChatCompletion.create(
|
|
model=model,
|
|
messages = messages
|
|
)
|
|
elif model in open_ai_text_completion_models:
|
|
openai.api_type = "openai"
|
|
openai.api_base = "https://api.openai.com/v1"
|
|
openai.api_version = None
|
|
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
|
prompt = " ".join([message["content"] for message in messages])
|
|
## LOGGING
|
|
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
response = openai.Completion.create(
|
|
model=model,
|
|
prompt = prompt
|
|
)
|
|
else:
|
|
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
|
|
return response
|
|
except Exception as e:
|
|
logging(model=model, input=messages, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
|
|
raise e
|
|
|
|
|
|
### EMBEDDING ENDPOINTS ####################
|
|
@client
|
|
@func_set_timeout(60, allowOverride=True) ## https://pypi.org/project/func-timeout/
|
|
def embedding(model, input=[], azure=False, forceTimeout=60, logger_fn=None):
|
|
response = None
|
|
if azure == True:
|
|
# azure configs
|
|
openai.api_type = "azure"
|
|
openai.api_base = os.environ.get("AZURE_API_BASE")
|
|
openai.api_version = os.environ.get("AZURE_API_VERSION")
|
|
openai.api_key = os.environ.get("AZURE_API_KEY")
|
|
## LOGGING
|
|
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
|
## EMBEDDING CALL
|
|
response = openai.Embedding.create(input=input, engine=model)
|
|
print_verbose(f"response_value: {str(response)[:50]}")
|
|
elif model in open_ai_embedding_models:
|
|
openai.api_type = "openai"
|
|
openai.api_base = "https://api.openai.com/v1"
|
|
openai.api_version = None
|
|
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
|
## LOGGING
|
|
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
|
## EMBEDDING CALL
|
|
response = openai.Embedding.create(input=input, model=model)
|
|
print_verbose(f"response_value: {str(response)[:50]}")
|
|
else:
|
|
logging(model=model, input=input, azure=azure, logger_fn=logger_fn)
|
|
args = locals()
|
|
raise ValueError(f"No valid embedding model args passed in - {args}")
|
|
|
|
return response
|
|
|
|
|
|
####### HELPER FUNCTIONS ################
|
|
|
|
def set_callbacks(callback_list):
|
|
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel
|
|
for callback in callback_list:
|
|
if callback == "sentry":
|
|
try:
|
|
import sentry_sdk
|
|
except ImportError:
|
|
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
|
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'sentry_sdk'])
|
|
import sentry_sdk
|
|
sentry_sdk_instance = sentry_sdk
|
|
sentry_sdk_instance.init(dsn=os.environ.get("SENTRY_API_URL"), traces_sample_rate=float(os.environ.get("SENTRY_API_TRACE_RATE")))
|
|
capture_exception = sentry_sdk_instance.capture_exception
|
|
add_breadcrumb = sentry_sdk_instance.add_breadcrumb
|
|
elif callback == "posthog":
|
|
try:
|
|
from posthog import Posthog
|
|
except ImportError:
|
|
print_verbose("Package 'posthog' is missing. Installing it...")
|
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'posthog'])
|
|
from posthog import Posthog
|
|
posthog = Posthog(
|
|
project_api_key=os.environ.get("POSTHOG_API_KEY"),
|
|
host=os.environ.get("POSTHOG_API_URL"))
|
|
elif callback == "slack":
|
|
try:
|
|
from slack_bolt import App
|
|
except ImportError:
|
|
print_verbose("Package 'slack_bolt' is missing. Installing it...")
|
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'slack_bolt'])
|
|
from slack_bolt import App
|
|
slack_app = App(
|
|
token=os.environ.get("SLACK_API_TOKEN"),
|
|
signing_secret=os.environ.get("SLACK_API_SECRET")
|
|
)
|
|
alerts_channel = os.environ["SLACK_API_CHANNEL"]
|
|
print_verbose(f"Initialized Slack App: {slack_app}")
|
|
|
|
|
|
def handle_failure(exception, traceback_exception, args, kwargs):
|
|
print_verbose(f"handle_failure args: {args}")
|
|
print_verbose(f"handle_failure kwargs: {kwargs}")
|
|
|
|
success_handler = additional_details.pop("success_handler", None)
|
|
failure_handler = additional_details.pop("failure_handler", None)
|
|
|
|
additional_details["Event_Name"] = additional_details.pop("failed_event_name", "litellm.failed_query")
|
|
print_verbose(f"self.failure_callback: {failure_callback}")
|
|
|
|
print_verbose(f"additional_details: {additional_details}")
|
|
for callback in failure_callback:
|
|
try:
|
|
if callback == "slack":
|
|
slack_msg = ""
|
|
if len(kwargs) > 0:
|
|
for key in kwargs:
|
|
slack_msg += f"{key}: {kwargs[key]}\n"
|
|
if len(args) > 0:
|
|
for i, arg in enumerate(args):
|
|
slack_msg += f"LiteLLM_Args_{str(i)}: {arg}"
|
|
for detail in additional_details:
|
|
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
|
slack_msg += f"Traceback: {traceback_exception}"
|
|
print_verbose(f"This is the slack message: {slack_msg}")
|
|
slack_app.client.chat_postMessage(channel=alerts_channel, text=slack_msg)
|
|
elif callback == "sentry":
|
|
capture_exception(exception)
|
|
elif callback == "posthog":
|
|
print_verbose(f"inside posthog, additional_details: {len(additional_details.keys())}")
|
|
ph_obj = {}
|
|
if len(kwargs) > 0:
|
|
ph_obj = kwargs
|
|
if len(args) > 0:
|
|
for i, arg in enumerate(args):
|
|
ph_obj["litellm_args_" + str(i)] = arg
|
|
print_verbose(f"ph_obj: {ph_obj}")
|
|
for detail in additional_details:
|
|
ph_obj[detail] = additional_details[detail]
|
|
event_name = additional_details["Event_Name"]
|
|
print_verbose(f"PostHog Event Name: {event_name}")
|
|
if "user_id" in additional_details:
|
|
posthog.capture(additional_details["user_id"], event_name, ph_obj)
|
|
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
|
|
print(f"ph_obj: {ph_obj})")
|
|
unique_id = str(uuid.uuid4())
|
|
posthog.capture(unique_id, event_name)
|
|
print_verbose(f"successfully logged to PostHog!")
|
|
except:
|
|
print_verbose(f"Error Occurred while logging failure: {traceback.format_exc()}")
|
|
pass
|
|
|
|
if failure_handler and callable(failure_handler):
|
|
call_details = {
|
|
"exception": exception,
|
|
"additional_details": additional_details
|
|
}
|
|
failure_handler(call_details)
|
|
pass
|
|
|
|
|
|
def handle_input(model_call_details={}):
|
|
if len(model_call_details.keys()) > 0:
|
|
model = model_call_details["model"] if "model" in model_call_details else None
|
|
if model:
|
|
for callback in callback_list:
|
|
if callback == "sentry": # add a sentry breadcrumb if user passed in sentry integration
|
|
add_breadcrumb(
|
|
category=f'{model}',
|
|
message='Trying request model {} input {}'.format(model, json.dumps(model_call_details)),
|
|
level='info',
|
|
)
|
|
if user_logger_fn and callable(user_logger_fn):
|
|
user_logger_fn(model_call_details)
|
|
pass
|
|
|
|
def handle_success(*args, **kwargs):
|
|
success_handler = additional_details.pop("success_handler", None)
|
|
failure_handler = additional_details.pop("failure_handler", None)
|
|
additional_details["Event_Name"] = additional_details.pop("successful_event_name", "litellm.succes_query")
|
|
for callback in success_callback:
|
|
try:
|
|
if callback == "posthog":
|
|
ph_obj = {}
|
|
for detail in additional_details:
|
|
ph_obj[detail] = additional_details[detail]
|
|
event_name = additional_details["Event_Name"]
|
|
if "user_id" in additional_details:
|
|
posthog.capture(additional_details["user_id"], event_name, ph_obj)
|
|
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
|
|
unique_id = str(uuid.uuid4())
|
|
posthog.capture(unique_id, event_name, ph_obj)
|
|
pass
|
|
elif callback == "slack":
|
|
slack_msg = ""
|
|
for detail in additional_details:
|
|
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
|
slack_app.client.chat_postMessage(channel=alerts_channel, text=slack_msg)
|
|
except:
|
|
pass
|
|
|
|
if success_handler and callable(success_handler):
|
|
success_handler(args, kwargs)
|
|
pass
|
|
|
|
#Logging function -> log the exact model details + what's being sent | Non-Blocking
|
|
def logging(model, input, azure=False, additional_args={}, logger_fn=None):
|
|
try:
|
|
model_call_details = {}
|
|
model_call_details["model"] = model
|
|
model_call_details["input"] = input
|
|
model_call_details["azure"] = azure
|
|
# log additional call details -> api key, etc.
|
|
if azure == True or model in open_ai_chat_completion_models or model in open_ai_chat_completion_models or model in open_ai_embedding_models:
|
|
model_call_details["api_type"] = openai.api_type
|
|
model_call_details["api_base"] = openai.api_base
|
|
model_call_details["api_version"] = openai.api_version
|
|
model_call_details["api_key"] = openai.api_key
|
|
elif "replicate" in model:
|
|
model_call_details["api_key"] = os.environ.get("REPLICATE_API_TOKEN")
|
|
elif model in anthropic_models:
|
|
model_call_details["api_key"] = os.environ.get("ANTHROPIC_API_KEY")
|
|
elif model in cohere_models:
|
|
model_call_details["api_key"] = os.environ.get("COHERE_API_KEY")
|
|
model_call_details["additional_args"] = additional_args
|
|
## Logging
|
|
print_verbose(f"Basic model call details: {model_call_details}")
|
|
if logger_fn and callable(logger_fn):
|
|
try:
|
|
logger_fn(model_call_details) # Expectation: any logger function passed in by the user should accept a dict object
|
|
except:
|
|
print_verbose(f"[Non-Blocking] Exception occurred while logging {traceback.format_exc()}")
|
|
pass
|
|
except:
|
|
pass
|