litellm-mirror/tests/llm_translation/test_prompt_factory.py
Krish Dholakia 5099aac1a5
Add DBRX Anthropic w/ thinking + response_format support (#9744)
* feat(databricks/chat/): add anthropic w/ reasoning content support via databricks

Allows user to call claude-3-7-sonnet with thinking via databricks

* refactor: refactor choices transformation + add unit testing

* fix(databricks/chat/transformation.py): support thinking blocks on databricks response streaming

* feat(databricks/chat/transformation.py): support response_format for claude models

* fix(databricks/chat/transformation.py): correctly handle response_format={"type": "text"}

* feat(databricks/chat/transformation.py): support 'reasoning_effort' param mapping for anthropic

* fix: fix ruff errors

* fix: fix linting error

* test: update test

* fix(databricks/chat/transformation.py): handle json mode output parsing

* fix(databricks/chat/transformation.py): handle json mode on streaming

* test: update test

* test: update dbrx testing

* test: update testing

* fix(base_model_iterator.py): handle non-json chunk

* test: update tests

* fix: fix ruff check

* fix: fix databricks config import

* fix: handle _tool = none

* test: skip invalid test
2025-04-04 22:13:32 -07:00

812 lines
31 KiB
Python

#### What this tests ####
# This tests if prompts are being correctly formatted
import os
import sys
import pytest
sys.path.insert(0, os.path.abspath("../.."))
from typing import Union
# from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory
import litellm
from litellm import completion
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_tools_pt,
anthropic_messages_pt,
anthropic_pt,
claude_2_1_pt,
convert_to_anthropic_image_obj,
convert_url_to_base64,
llama_2_chat_pt,
prompt_factory,
)
from litellm.litellm_core_utils.prompt_templates.common_utils import (
get_completion_messages,
)
from litellm.llms.vertex_ai.gemini.transformation import (
_gemini_convert_messages_with_history,
)
from unittest.mock import AsyncMock, MagicMock, patch
def test_llama_3_prompt():
messages = [
{"role": "system", "content": "You are a good bot"},
{"role": "user", "content": "Hey, how's it going?"},
]
received_prompt = prompt_factory(
model="meta-llama/Meta-Llama-3-8B-Instruct", messages=messages
)
print(f"received_prompt: {received_prompt}")
expected_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a good bot<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHey, how's it going?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
assert received_prompt == expected_prompt
def test_codellama_prompt_format():
messages = [
{"role": "system", "content": "You are a good bot"},
{"role": "user", "content": "Hey, how's it going?"},
]
expected_prompt = "<s>[INST] <<SYS>>\nYou are a good bot\n<</SYS>>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n"
assert llama_2_chat_pt(messages) == expected_prompt
def test_claude_2_1_pt_formatting():
# Test case: User only, should add Assistant
messages = [{"role": "user", "content": "Hello"}]
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, User, and Assistant "pre-fill" sequence,
# Should return pre-fill
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
{"role": "assistant", "content": "{"},
]
expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, Assistant sequence, should insert blank Human message
# before Assistant pre-fill
messages = [
{"role": "system", "content": "You are a storyteller."},
{"role": "assistant", "content": "Once upon a time, there "},
]
expected_prompt = (
"You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there "
)
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, User sequence
messages = [
{"role": "system", "content": "System reboot"},
{"role": "user", "content": "Is everything okay?"},
]
expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: "
assert claude_2_1_pt(messages) == expected_prompt
def test_anthropic_pt_formatting():
# Test case: User only, should add Assistant
messages = [{"role": "user", "content": "Hello"}]
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
assert anthropic_pt(messages) == expected_prompt
# Test case: System, User, and Assistant "pre-fill" sequence,
# Should return pre-fill
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
{"role": "assistant", "content": "{"},
]
expected_prompt = '\n\nHuman: <admin>You are a helpful assistant.</admin>\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
assert anthropic_pt(messages) == expected_prompt
# Test case: System, Assistant sequence, should NOT insert blank Human message
# before Assistant pre-fill, because "System" messages are Human
# messages wrapped with <admin></admin>
messages = [
{"role": "system", "content": "You are a storyteller."},
{"role": "assistant", "content": "Once upon a time, there "},
]
expected_prompt = "\n\nHuman: <admin>You are a storyteller.</admin>\n\nAssistant: Once upon a time, there "
assert anthropic_pt(messages) == expected_prompt
# Test case: System, User sequence
messages = [
{"role": "system", "content": "System reboot"},
{"role": "user", "content": "Is everything okay?"},
]
expected_prompt = "\n\nHuman: <admin>System reboot</admin>\n\nHuman: Is everything okay?\n\nAssistant: "
assert anthropic_pt(messages) == expected_prompt
def test_anthropic_messages_nested_pt():
from litellm.types.llms.anthropic import (
AnthopicMessagesAssistantMessageParam,
AnthropicMessagesUserMessageParam,
)
messages = [
{"content": [{"text": "here is a task", "type": "text"}], "role": "user"},
{
"content": [{"text": "sure happy to help", "type": "text"}],
"role": "assistant",
},
{
"content": [
{
"text": "Here is a screenshot of the current desktop with the "
"mouse coordinates (500, 350). Please select an action "
"from the provided schema.",
"type": "text",
}
],
"role": "user",
},
]
new_messages = anthropic_messages_pt(
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
)
assert isinstance(new_messages[1]["content"][0]["text"], str)
# codellama_prompt_format()
def test_bedrock_tool_calling_pt():
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
converted_tools = _bedrock_tools_pt(tools=tools)
print(converted_tools)
def test_convert_url_to_img():
response_url = convert_url_to_base64(
url="https://images.pexels.com/photos/1319515/pexels-photo-1319515.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"
)
assert "image/jpeg" in response_url
@pytest.mark.parametrize(
"url, expected_media_type",
[
("", "image/jpeg"),
("data:application/pdf;base64,1234", "application/pdf"),
(r"data:image\/jpeg;base64,1234", "image/jpeg"),
],
)
def test_base64_image_input(url, expected_media_type):
response = convert_to_anthropic_image_obj(openai_image_url=url, format=None)
assert response["media_type"] == expected_media_type
def test_anthropic_messages_tool_call():
messages = [
{
"role": "user",
"content": "Would development of a software platform be under ASC 350-40 or ASC 985?",
},
{
"role": "assistant",
"content": "",
"tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
"tool_calls": [
{
"id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
"function": {
"arguments": '{"completed_steps": [], "next_steps": [{"tool_name": "AccountingResearchTool", "description": "Research ASC 350-40 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Research ASC 985 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}], "learnings": [], "potential_issues": ["The distinction between the two standards might not be clear-cut for all types of software development.", "There might be specific circumstances or details about the software platform that could affect which standard applies."], "missing_info": ["Specific details about the type of software platform being developed (e.g., for internal use or for sale).", "Whether the entity developing the software is also the end-user or if it\'s being developed for external customers."], "done": false, "required_formatting": null}',
"name": "TaskPlanningTool",
},
"type": "function",
}
],
},
{
"role": "function",
"content": '{"completed_steps":[],"next_steps":[{"tool_name":"AccountingResearchTool","description":"Research ASC 350-40 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Research ASC 985 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}],"formatting_step":null}',
"name": "TaskPlanningTool",
"tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
},
]
translated_messages = anthropic_messages_pt(
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
)
print(translated_messages)
assert (
translated_messages[-1]["content"][0]["tool_use_id"]
== "bc8cb4b6-88c4-4138-8993-3a9d9cd51656"
)
def test_anthropic_cache_controls_pt():
"see anthropic docs for this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation"
messages = [
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
},
{
"role": "assistant",
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
},
# The final turn is marked with cache-control, for continuing in followups.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
},
{
"role": "assistant",
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
"cache_control": {"type": "ephemeral"},
},
]
translated_messages = anthropic_messages_pt(
messages, model="claude-3-5-sonnet-20240620", llm_provider="anthropic"
)
for i, msg in enumerate(translated_messages):
if i == 0:
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
elif i == 1:
assert "cache_controls" not in msg["content"][0]
elif i == 2:
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
elif i == 3:
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
print("translated_messages: ", translated_messages)
def test_anthropic_cache_controls_tool_calls_pt():
"""
Tests that cache_control is properly set in tool_calls when converting messages
for the Anthropic API.
"""
messages = [
{
"role": "user",
"content": "Can you help me get the weather?",
},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "weather-tool-id-123",
"function": {
"arguments": '{"location": "San Francisco"}',
"name": "get_weather",
},
"type": "function",
}
],
"cache_control": {"type": "ephemeral"},
},
{
"role": "function",
"content": '{"temperature": 72, "unit": "fahrenheit", "description": "sunny"}',
"name": "get_weather",
"tool_call_id": "weather-tool-id-123",
"cache_control": {"type": "ephemeral"},
},
]
translated_messages = anthropic_messages_pt(
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
)
print("Translated tool call messages:", translated_messages)
assert translated_messages[0]["role"] == "user"
assert translated_messages[1]["role"] == "assistant"
for content_item in translated_messages[1]["content"]:
if content_item["type"] == "tool_use":
assert "cache_control" not in content_item
assert content_item["name"] == "get_weather"
assert translated_messages[2]["role"] == "user"
for content_item in translated_messages[2]["content"]:
if content_item["type"] == "tool_result":
assert content_item["cache_control"] == {"type": "ephemeral"}
@pytest.mark.parametrize("provider", ["bedrock", "anthropic"])
def test_bedrock_parallel_tool_calling_pt(provider):
"""
Make sure parallel tool call blocks are merged correctly - https://github.com/BerriAI/litellm/issues/5277
"""
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_converse_messages_pt,
)
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
},
Message(
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
index=1,
function=Function(
arguments='{"city": "New York"}',
name="get_current_weather",
),
id="tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
type="function",
),
ChatCompletionMessageToolCall(
index=2,
function=Function(
arguments='{"city": "London"}',
name="get_current_weather",
),
id="tooluse_VB9nk7UGRniVzGcaj6xrAQ",
type="function",
),
],
function_call=None,
),
{
"tool_call_id": "tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
"role": "tool",
"name": "get_current_weather",
"content": "25 degrees celsius.",
},
{
"tool_call_id": "tooluse_VB9nk7UGRniVzGcaj6xrAQ",
"role": "tool",
"name": "get_current_weather",
"content": "28 degrees celsius.",
},
]
if provider == "bedrock":
translated_messages = _bedrock_converse_messages_pt(
messages=messages,
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
)
else:
translated_messages = anthropic_messages_pt(
messages=messages,
model="claude-3-sonnet-20240229-v1:0",
llm_provider=provider,
)
print(translated_messages)
number_of_messages = len(translated_messages)
# assert last 2 messages are not the same role
assert (
translated_messages[number_of_messages - 1]["role"]
!= translated_messages[number_of_messages - 2]["role"]
)
def test_vertex_only_image_user_message():
base64_image = "/9j/2wCEAAgGBgcGBQ"
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
]
response = _gemini_convert_messages_with_history(messages=messages)
expected_response = [
{
"role": "user",
"parts": [
{
"inline_data": {
"data": "/9j/2wCEAAgGBgcGBQ",
"mime_type": "image/jpeg",
}
},
{"text": " "},
],
}
]
assert len(response) == len(expected_response)
for idx, content in enumerate(response):
assert (
content == expected_response[idx]
), "Invalid gemini input. Got={}, Expected={}".format(
content, expected_response[idx]
)
def test_convert_url():
convert_url_to_base64("https://picsum.photos/id/237/200/300")
def test_azure_tool_call_invoke_helper():
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather in Copenhagen?"},
{"role": "assistant", "function_call": {"name": "get_weather"}},
]
transformed_messages = litellm.AzureOpenAIConfig().transform_request(
model="gpt-4o",
messages=messages,
optional_params={},
litellm_params={},
headers={},
)
assert transformed_messages["messages"] == [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather in Copenhagen?"},
{
"role": "assistant",
"function_call": {"name": "get_weather", "arguments": ""},
},
]
@pytest.mark.parametrize(
"messages, expected_messages, user_continue_message, assistant_continue_message",
[
(
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
{"role": "assistant", "content": "I don't know anyything, do you?"},
],
[
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue.",
},
{"role": "user", "content": "What is Azure?"},
{
"role": "assistant",
"content": "I don't know anyything, do you?",
},
{
"role": "user",
"content": "Please continue.",
},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
],
[
{"role": "user", "content": "Hello!"},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
{"role": "user", "content": "What is Databricks?"},
],
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Please continue."},
{"role": "user", "content": "What is Databricks?"},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
],
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Please continue."},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue.",
},
{"role": "user", "content": "What is Azure?"},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
{"role": "assistant", "content": "I don't know anyything, do you?"},
{"role": "assistant", "content": "I can't repeat sentences."},
],
[
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue",
},
{"role": "user", "content": "What is Azure?"},
{
"role": "assistant",
"content": "I don't know anyything, do you?",
},
{
"role": "user",
"content": "Ok",
},
{
"role": "assistant",
"content": "I can't repeat sentences.",
},
{"role": "user", "content": "Ok"},
],
{
"role": "user",
"content": "Ok",
},
{
"role": "assistant",
"content": "Please continue",
},
),
],
)
def test_ensure_alternating_roles(
messages, expected_messages, user_continue_message, assistant_continue_message
):
messages = get_completion_messages(
messages=messages,
assistant_continue_message=assistant_continue_message,
user_continue_message=user_continue_message,
ensure_alternating_roles=True,
)
print(messages)
assert messages == expected_messages
def test_alternating_roles_e2e():
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import json
litellm.set_verbose = True
http_handler = HTTPHandler()
with patch.object(http_handler, "post", new=MagicMock()) as mock_post:
try:
response = litellm.completion(
**{
"model": "databricks/databricks-meta-llama-3-1-70b-instruct",
"messages": [
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
{"role": "assistant", "content": "I don't know anyything, do you?"},
{"role": "assistant", "content": "I can't repeat sentences."},
],
"user_continue_message": {
"role": "user",
"content": "Ok",
},
"assistant_continue_message": {
"role": "assistant",
"content": "Please continue",
},
"ensure_alternating_roles": True,
},
client=http_handler,
)
except Exception as e:
print(f"error: {e}")
assert mock_post.call_args.kwargs["data"] == json.dumps(
{
"model": "databricks-meta-llama-3-1-70b-instruct",
"messages": [
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue",
},
{"role": "user", "content": "What is Azure?"},
{
"role": "assistant",
"content": "I don't know anyything, do you?",
},
{
"role": "user",
"content": "Ok",
},
{
"role": "assistant",
"content": "I can't repeat sentences.",
},
{
"role": "user",
"content": "Ok",
},
]
}
)
def test_just_system_message():
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_converse_messages_pt,
)
with pytest.raises(litellm.BadRequestError) as e:
_bedrock_converse_messages_pt(
messages=[],
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
)
assert "bedrock requires at least one non-system message" in str(e.value)
def test_convert_generic_image_chunk_to_openai_image_obj():
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_generic_image_chunk_to_openai_image_obj,
convert_to_anthropic_image_obj,
)
url = "https://i.pinimg.com/736x/b4/b1/be/b4b1becad04d03a9071db2817fc9fe77.jpg"
image_obj = convert_to_anthropic_image_obj(url, format=None)
url_str = convert_generic_image_chunk_to_openai_image_obj(image_obj)
image_obj = convert_to_anthropic_image_obj(url_str, format=None)
print(image_obj)
def test_hf_chat_template():
from litellm.litellm_core_utils.prompt_templates.factory import (
hf_chat_template,
)
model = "llama/arn:aws:bedrock:us-east-1:1234:imported-model/45d34re"
litellm.register_prompt_template(
model=model,
tokenizer_config={
"add_bos_token": True,
"add_eos_token": False,
"bos_token": {
"__type": "AddedToken",
"content": "",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"clean_up_tokenization_spaces": False,
"eos_token": {
"__type": "AddedToken",
"content": "",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"legacy": True,
"model_max_length": 16384,
"pad_token": {
"__type": "AddedToken",
"content": "",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"sp_model_kwargs": {},
"unk_token": None,
"tokenizer_class": "LlamaTokenizerFast",
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{' ' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{' ' + tool['type'] + ' ' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + ' '}}{%- set ns.is_first = true -%}{%- else %}{{' ' + tool['type'] + ' ' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + ' '}}{{' '}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{' ' + message['content'] + ' '}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{' ' + content + ' '}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{' ' + message['content'] + ' '}}{%- set ns.is_output_first = false %}{%- else %}{{' ' + message['content'] + ' '}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{' '}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{' '}}{% endif %}",
},
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather in Copenhagen?"},
]
chat_template = hf_chat_template(model=model, messages=messages)
print(chat_template)
assert (
chat_template.rstrip()
== "You are a helpful assistant. What is the weather in Copenhagen?"
)
def test_ollama_pt():
from litellm.litellm_core_utils.prompt_templates.factory import ollama_pt
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"},
]
prompt = ollama_pt(model="ollama/llama3.1", messages=messages)
print(prompt)