litellm-mirror/litellm/llms/cohere/embed/transformation.py
Krish Dholakia 197655bf2a LiteLLM Minor Fixes & Improvements (10/24/2024) (#6421)
* fix(utils.py): support passing dynamic api base to validate_environment

Returns True if just api base is required and api base is passed

* fix(litellm_pre_call_utils.py): feature flag sending client headers to llm api

Fixes https://github.com/BerriAI/litellm/issues/6410

* fix(anthropic/chat/transformation.py): return correct error message

* fix(http_handler.py): add error response text in places where we expect it

* fix(factory.py): handle base case of no non-system messages to bedrock

Fixes https://github.com/BerriAI/litellm/issues/6411

* feat(cohere/embed): Support cohere image embeddings

Closes https://github.com/BerriAI/litellm/issues/6413

* fix(__init__.py): fix linting error

* docs(supported_embedding.md): add image embedding example to docs

* feat(cohere/embed): use cohere embedding returned usage for cost calc

* build(model_prices_and_context_window.json): add embed-english-v3.0 details (image cost + 'supports_image_input' flag)

* fix(cohere_transformation.py): fix linting error

* test(test_proxy_server.py): cleanup test

* test: cleanup test

* fix: fix linting errors
2024-10-25 15:55:56 -07:00

160 lines
4.6 KiB
Python

"""
Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format.
Why separate file? Make it easy to see how transformation works
Convers
- v3 embedding models
- v2 embedding models
Docs - https://docs.cohere.com/v2/reference/embed
"""
import types
from typing import Any, List, Optional, Union
import httpx
from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.types.llms.bedrock import (
COHERE_EMBEDDING_INPUT_TYPES,
CohereEmbeddingRequest,
CohereEmbeddingRequestWithModel,
)
from litellm.types.utils import (
Embedding,
EmbeddingResponse,
PromptTokensDetailsWrapper,
Usage,
)
from litellm.utils import is_base64_encoded
class CohereEmbeddingConfig:
"""
Reference: https://docs.cohere.com/v2/reference/embed
"""
def __init__(self) -> None:
pass
def get_supported_openai_params(self) -> List[str]:
return ["encoding_format"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
for k, v in non_default_params.items():
if k == "encoding_format":
optional_params["embedding_types"] = v
return optional_params
def _is_v3_model(self, model: str) -> bool:
return "3" in model
def _transform_request(
self, model: str, input: List[str], inference_params: dict
) -> CohereEmbeddingRequestWithModel:
is_encoded = False
for input_str in input:
is_encoded = is_base64_encoded(input_str)
if is_encoded: # check if string is b64 encoded image or not
transformed_request = CohereEmbeddingRequestWithModel(
model=model,
images=input,
input_type="image",
)
else:
transformed_request = CohereEmbeddingRequestWithModel(
model=model,
texts=input,
input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE,
)
for k, v in inference_params.items():
transformed_request[k] = v # type: ignore
return transformed_request
def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage:
input_tokens = 0
text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens")
image_tokens: Optional[int] = meta.get("billed_units", {}).get("images")
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
if image_tokens is None and text_tokens is None:
for text in input:
input_tokens += len(encoding.encode(text))
else:
prompt_tokens_details = PromptTokensDetailsWrapper(
image_tokens=image_tokens,
text_tokens=text_tokens,
)
if image_tokens:
input_tokens += image_tokens
if text_tokens:
input_tokens += text_tokens
return Usage(
prompt_tokens=input_tokens,
completion_tokens=0,
total_tokens=input_tokens,
prompt_tokens_details=prompt_tokens_details,
)
def _transform_response(
self,
response: httpx.Response,
api_key: Optional[str],
logging_obj: LiteLLMLoggingObj,
data: Union[dict, CohereEmbeddingRequest],
model_response: EmbeddingResponse,
model: str,
encoding: Any,
input: list,
) -> EmbeddingResponse:
response_json = response.json()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
"""
response
{
'object': "list",
'data': [
]
'model',
'usage'
}
"""
embeddings = response_json["embeddings"]
output_data = []
for idx, embedding in enumerate(embeddings):
output_data.append(
{"object": "embedding", "index": idx, "embedding": embedding}
)
model_response.object = "list"
model_response.data = output_data
model_response.model = model
input_tokens = 0
for text in input:
input_tokens += len(encoding.encode(text))
setattr(
model_response,
"usage",
self._calculate_usage(input, encoding, response_json.get("meta", {})),
)
return model_response