mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* add base rerank config * working sync cohere rerank * update rerank types * update base rerank config * remove old rerank * add new cohere handler.py * add cohere rerank transform * add get_provider_rerank_config * add rerank to base llm http handler * add rerank utils * add arerank to llm http handler.py * add AzureAIRerankConfig * updates rerank config * update test rerank * fix unused imports * update get_provider_rerank_config * test_basic_rerank_caching * fix unused import * test rerank
222 lines
7.1 KiB
Python
222 lines
7.1 KiB
Python
from abc import ABC, abstractmethod
|
|
from litellm.caching import LiteLLMCacheType
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import asyncio
|
|
import hashlib
|
|
import random
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm.caching import Cache
|
|
from litellm import completion, embedding
|
|
|
|
|
|
class LLMCachingUnitTests(ABC):
|
|
|
|
@abstractmethod
|
|
def get_cache_type(self) -> LiteLLMCacheType:
|
|
pass
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_cache_completion(self, sync_mode):
|
|
litellm._turn_on_debug()
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"write a one sentence poem about: {random_number}",
|
|
}
|
|
]
|
|
|
|
cache_type = self.get_cache_type()
|
|
litellm.cache = Cache(
|
|
type=cache_type,
|
|
)
|
|
|
|
if sync_mode:
|
|
response1 = completion(
|
|
"gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
max_tokens=20,
|
|
mock_response="This number is so great!",
|
|
)
|
|
else:
|
|
response1 = await litellm.acompletion(
|
|
"gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
max_tokens=20,
|
|
mock_response="This number is so great!",
|
|
)
|
|
# response2 is mocked to a different response from response1,
|
|
# but the completion from the cache should be used instead of the mock
|
|
# response since the input is the same as response1
|
|
await asyncio.sleep(0.5)
|
|
if sync_mode:
|
|
response2 = completion(
|
|
"gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
max_tokens=20,
|
|
mock_response="This number is great!",
|
|
)
|
|
else:
|
|
response2 = await litellm.acompletion(
|
|
"gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
max_tokens=20,
|
|
mock_response="This number is great!",
|
|
)
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
!= response2["choices"][0]["message"]["content"]
|
|
): # 1 and 2 should be the same
|
|
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(
|
|
f"Error occurred: response1 - {response1['choices'][0]['message']['content']} != response2 - {response2['choices'][0]['message']['content']}"
|
|
)
|
|
# Since the parameters are not the same as response1, response3 should actually
|
|
# be the mock response
|
|
if sync_mode:
|
|
response3 = completion(
|
|
"gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
temperature=0.5,
|
|
mock_response="This number is awful!",
|
|
)
|
|
else:
|
|
response3 = await litellm.acompletion(
|
|
"gpt-3.5-turbo",
|
|
messages=messages,
|
|
caching=True,
|
|
temperature=0.5,
|
|
mock_response="This number is awful!",
|
|
)
|
|
|
|
print("\nresponse 1", response1)
|
|
print("\nresponse 2", response2)
|
|
print("\nresponse 3", response3)
|
|
# print("\nresponse 4", response4)
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
|
|
# 1 & 2 should be exactly the same
|
|
# 1 & 3 should be different, since input params are diff
|
|
|
|
if (
|
|
response1["choices"][0]["message"]["content"]
|
|
== response3["choices"][0]["message"]["content"]
|
|
):
|
|
# if input params like max_tokens, temperature are diff it should NOT be a cache hit
|
|
print(f"response1: {response1}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(
|
|
f"Response 1 == response 3. Same model, diff params shoudl not cache Error"
|
|
f" occurred:"
|
|
)
|
|
|
|
assert response1.id == response2.id
|
|
assert response1.created == response2.created
|
|
assert (
|
|
response1.choices[0].message.content == response2.choices[0].message.content
|
|
)
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_disk_cache_embedding(self, sync_mode):
|
|
litellm._turn_on_debug()
|
|
|
|
random_number = random.randint(
|
|
1, 100000
|
|
) # add a random number to ensure it's always adding / reading from cache
|
|
input = [f"hello {random_number}"]
|
|
litellm.cache = Cache(
|
|
type="disk",
|
|
)
|
|
|
|
if sync_mode:
|
|
response1 = embedding(
|
|
"openai/text-embedding-ada-002",
|
|
input=input,
|
|
caching=True,
|
|
)
|
|
else:
|
|
response1 = await litellm.aembedding(
|
|
"openai/text-embedding-ada-002",
|
|
input=input,
|
|
caching=True,
|
|
)
|
|
# response2 is mocked to a different response from response1,
|
|
# but the completion from the cache should be used instead of the mock
|
|
# response since the input is the same as response1
|
|
await asyncio.sleep(0.5)
|
|
if sync_mode:
|
|
response2 = embedding(
|
|
"openai/text-embedding-ada-002",
|
|
input=input,
|
|
caching=True,
|
|
)
|
|
else:
|
|
response2 = await litellm.aembedding(
|
|
"openai/text-embedding-ada-002",
|
|
input=input,
|
|
caching=True,
|
|
)
|
|
|
|
if response2._hidden_params["cache_hit"] is not True:
|
|
pytest.fail("Cache hit should be True")
|
|
|
|
# Since the parameters are not the same as response1, response3 should actually
|
|
# be the mock response
|
|
if sync_mode:
|
|
response3 = embedding(
|
|
"openai/text-embedding-ada-002",
|
|
input=input,
|
|
user="charlie",
|
|
caching=True,
|
|
)
|
|
else:
|
|
response3 = await litellm.aembedding(
|
|
"openai/text-embedding-ada-002",
|
|
input=input,
|
|
caching=True,
|
|
user="charlie",
|
|
)
|
|
|
|
print("\nresponse 1", response1)
|
|
print("\nresponse 2", response2)
|
|
print("\nresponse 3", response3)
|
|
# print("\nresponse 4", response4)
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
|
|
# 1 & 2 should be exactly the same
|
|
# 1 & 3 should be different, since input params are diff
|
|
|
|
if response3._hidden_params.get("cache_hit") is True:
|
|
pytest.fail("Cache hit should not be True")
|