mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* docs litellm responses api * doc fix * docs responses API * add get_supported_openai_params for LiteLLMCompletionResponsesConfig * add Supported Responses API Parameters
664 lines
25 KiB
Python
664 lines
25 KiB
Python
"""
|
|
Handles transforming from Responses API -> LiteLLM completion (Chat Completion API)
|
|
"""
|
|
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from openai.types.responses.tool_param import FunctionToolParam
|
|
|
|
from litellm.caching import InMemoryCache
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.responses.litellm_completion_transformation.session_handler import (
|
|
ResponsesAPISessionElement,
|
|
SessionHandler,
|
|
)
|
|
from litellm.types.llms.openai import (
|
|
AllMessageValues,
|
|
ChatCompletionResponseMessage,
|
|
ChatCompletionSystemMessage,
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionToolCallFunctionChunk,
|
|
ChatCompletionToolMessage,
|
|
ChatCompletionToolParam,
|
|
ChatCompletionToolParamFunctionChunk,
|
|
ChatCompletionUserMessage,
|
|
GenericChatCompletionMessage,
|
|
Reasoning,
|
|
ResponseAPIUsage,
|
|
ResponseInputParam,
|
|
ResponsesAPIOptionalRequestParams,
|
|
ResponsesAPIResponse,
|
|
ResponseTextConfig,
|
|
)
|
|
from litellm.types.responses.main import (
|
|
GenericResponseOutputItem,
|
|
GenericResponseOutputItemContentAnnotation,
|
|
OutputFunctionToolCall,
|
|
OutputText,
|
|
)
|
|
from litellm.types.utils import (
|
|
ChatCompletionAnnotation,
|
|
ChatCompletionMessageToolCall,
|
|
Choices,
|
|
Function,
|
|
Message,
|
|
ModelResponse,
|
|
Usage,
|
|
)
|
|
|
|
########### Initialize Classes used for Responses API ###########
|
|
TOOL_CALLS_CACHE = InMemoryCache()
|
|
RESPONSES_API_SESSION_HANDLER = SessionHandler()
|
|
########### End of Initialize Classes used for Responses API ###########
|
|
|
|
|
|
class LiteLLMCompletionResponsesConfig:
|
|
@staticmethod
|
|
def get_supported_openai_params(model: str) -> list:
|
|
"""
|
|
LiteLLM Adapter from OpenAI Responses API to Chat Completion API supports a subset of OpenAI Responses API params
|
|
"""
|
|
return [
|
|
"input",
|
|
"model",
|
|
"instructions",
|
|
"max_output_tokens",
|
|
"metadata",
|
|
"parallel_tool_calls",
|
|
"previous_response_id",
|
|
"stream",
|
|
"temperature",
|
|
"tool_choice",
|
|
"tools",
|
|
"top_p",
|
|
"user",
|
|
]
|
|
|
|
@staticmethod
|
|
def transform_responses_api_request_to_chat_completion_request(
|
|
model: str,
|
|
input: Union[str, ResponseInputParam],
|
|
responses_api_request: ResponsesAPIOptionalRequestParams,
|
|
custom_llm_provider: Optional[str] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs,
|
|
) -> dict:
|
|
"""
|
|
Transform a Responses API request into a Chat Completion request
|
|
"""
|
|
litellm_completion_request: dict = {
|
|
"messages": LiteLLMCompletionResponsesConfig.transform_responses_api_input_to_messages(
|
|
input=input,
|
|
responses_api_request=responses_api_request,
|
|
previous_response_id=responses_api_request.get("previous_response_id"),
|
|
),
|
|
"model": model,
|
|
"tool_choice": responses_api_request.get("tool_choice"),
|
|
"tools": LiteLLMCompletionResponsesConfig.transform_responses_api_tools_to_chat_completion_tools(
|
|
responses_api_request.get("tools") or [] # type: ignore
|
|
),
|
|
"top_p": responses_api_request.get("top_p"),
|
|
"user": responses_api_request.get("user"),
|
|
"temperature": responses_api_request.get("temperature"),
|
|
"parallel_tool_calls": responses_api_request.get("parallel_tool_calls"),
|
|
"max_tokens": responses_api_request.get("max_output_tokens"),
|
|
"stream": stream,
|
|
"metadata": kwargs.get("metadata"),
|
|
"service_tier": kwargs.get("service_tier"),
|
|
# litellm specific params
|
|
"custom_llm_provider": custom_llm_provider,
|
|
}
|
|
|
|
# Responses API `Completed` events require usage, we pass `stream_options` to litellm.completion to include usage
|
|
if stream is True:
|
|
stream_options = {
|
|
"include_usage": True,
|
|
}
|
|
litellm_completion_request["stream_options"] = stream_options
|
|
litellm_logging_obj: Optional[LiteLLMLoggingObj] = kwargs.get(
|
|
"litellm_logging_obj"
|
|
)
|
|
if litellm_logging_obj:
|
|
litellm_logging_obj.stream_options = stream_options
|
|
|
|
# only pass non-None values
|
|
litellm_completion_request = {
|
|
k: v for k, v in litellm_completion_request.items() if v is not None
|
|
}
|
|
|
|
return litellm_completion_request
|
|
|
|
@staticmethod
|
|
def transform_responses_api_input_to_messages(
|
|
input: Union[str, ResponseInputParam],
|
|
responses_api_request: ResponsesAPIOptionalRequestParams,
|
|
previous_response_id: Optional[str] = None,
|
|
) -> List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
]:
|
|
"""
|
|
Transform a Responses API input into a list of messages
|
|
"""
|
|
messages: List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
] = []
|
|
if responses_api_request.get("instructions"):
|
|
messages.append(
|
|
LiteLLMCompletionResponsesConfig.transform_instructions_to_system_message(
|
|
responses_api_request.get("instructions")
|
|
)
|
|
)
|
|
|
|
if previous_response_id:
|
|
previous_response_pairs = (
|
|
RESPONSES_API_SESSION_HANDLER.get_chain_of_previous_input_output_pairs(
|
|
previous_response_id=previous_response_id
|
|
)
|
|
)
|
|
if previous_response_pairs:
|
|
for previous_response_pair in previous_response_pairs:
|
|
chat_completion_input_messages = LiteLLMCompletionResponsesConfig._transform_response_input_param_to_chat_completion_message(
|
|
input=previous_response_pair[0],
|
|
)
|
|
chat_completion_output_messages = LiteLLMCompletionResponsesConfig._transform_responses_api_outputs_to_chat_completion_messages(
|
|
responses_api_output=previous_response_pair[1],
|
|
)
|
|
|
|
messages.extend(chat_completion_input_messages)
|
|
messages.extend(chat_completion_output_messages)
|
|
|
|
messages.extend(
|
|
LiteLLMCompletionResponsesConfig._transform_response_input_param_to_chat_completion_message(
|
|
input=input,
|
|
)
|
|
)
|
|
|
|
return messages
|
|
|
|
@staticmethod
|
|
def _transform_response_input_param_to_chat_completion_message(
|
|
input: Union[str, ResponseInputParam],
|
|
) -> List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
]:
|
|
"""
|
|
Transform a ResponseInputParam into a Chat Completion message
|
|
"""
|
|
messages: List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
] = []
|
|
tool_call_output_messages: List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
] = []
|
|
|
|
if isinstance(input, str):
|
|
messages.append(ChatCompletionUserMessage(role="user", content=input))
|
|
elif isinstance(input, list):
|
|
for _input in input:
|
|
chat_completion_messages = LiteLLMCompletionResponsesConfig._transform_responses_api_input_item_to_chat_completion_message(
|
|
input_item=_input
|
|
)
|
|
if LiteLLMCompletionResponsesConfig._is_input_item_tool_call_output(
|
|
input_item=_input
|
|
):
|
|
tool_call_output_messages.extend(chat_completion_messages)
|
|
else:
|
|
messages.extend(chat_completion_messages)
|
|
|
|
messages.extend(tool_call_output_messages)
|
|
return messages
|
|
|
|
@staticmethod
|
|
def _ensure_tool_call_output_has_corresponding_tool_call(
|
|
messages: List[Union[AllMessageValues, GenericChatCompletionMessage]],
|
|
) -> bool:
|
|
"""
|
|
If any tool call output is present, ensure there is a corresponding tool call/tool_use block
|
|
"""
|
|
for message in messages:
|
|
if message.get("role") == "tool":
|
|
return True
|
|
return False
|
|
|
|
@staticmethod
|
|
def _transform_responses_api_input_item_to_chat_completion_message(
|
|
input_item: Any,
|
|
) -> List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
]:
|
|
"""
|
|
Transform a Responses API input item into a Chat Completion message
|
|
|
|
- EasyInputMessageParam
|
|
- Message
|
|
- ResponseOutputMessageParam
|
|
- ResponseFileSearchToolCallParam
|
|
- ResponseComputerToolCallParam
|
|
- ComputerCallOutput
|
|
- ResponseFunctionWebSearchParam
|
|
- ResponseFunctionToolCallParam
|
|
- FunctionCallOutput
|
|
- ResponseReasoningItemParam
|
|
- ItemReference
|
|
"""
|
|
if LiteLLMCompletionResponsesConfig._is_input_item_tool_call_output(input_item):
|
|
# handle executed tool call results
|
|
return LiteLLMCompletionResponsesConfig._transform_responses_api_tool_call_output_to_chat_completion_message(
|
|
tool_call_output=input_item
|
|
)
|
|
else:
|
|
return [
|
|
GenericChatCompletionMessage(
|
|
role=input_item.get("role") or "user",
|
|
content=LiteLLMCompletionResponsesConfig._transform_responses_api_content_to_chat_completion_content(
|
|
input_item.get("content")
|
|
),
|
|
)
|
|
]
|
|
|
|
@staticmethod
|
|
def _is_input_item_tool_call_output(input_item: Any) -> bool:
|
|
"""
|
|
Check if the input item is a tool call output
|
|
"""
|
|
return input_item.get("type") in [
|
|
"function_call_output",
|
|
"web_search_call",
|
|
"computer_call_output",
|
|
]
|
|
|
|
@staticmethod
|
|
def _transform_responses_api_tool_call_output_to_chat_completion_message(
|
|
tool_call_output: Dict[str, Any],
|
|
) -> List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionResponseMessage,
|
|
]
|
|
]:
|
|
"""
|
|
ChatCompletionToolMessage is used to indicate the output from a tool call
|
|
"""
|
|
tool_output_message = ChatCompletionToolMessage(
|
|
role="tool",
|
|
content=tool_call_output.get("output") or "",
|
|
tool_call_id=tool_call_output.get("call_id") or "",
|
|
)
|
|
|
|
_tool_use_definition = TOOL_CALLS_CACHE.get_cache(
|
|
key=tool_call_output.get("call_id") or "",
|
|
)
|
|
if _tool_use_definition:
|
|
"""
|
|
Append the tool use definition to the list of messages
|
|
|
|
|
|
Providers like Anthropic require the tool use definition to be included with the tool output
|
|
|
|
- Input:
|
|
{'function':
|
|
arguments:'{"command": ["echo","<html>\\n<head>\\n <title>Hello</title>\\n</head>\\n<body>\\n <h1>Hi</h1>\\n</body>\\n</html>",">","index.html"]}',
|
|
name='shell',
|
|
'id': 'toolu_018KFWsEySHjdKZPdUzXpymJ',
|
|
'type': 'function'
|
|
}
|
|
- Output:
|
|
{
|
|
"id": "toolu_018KFWsEySHjdKZPdUzXpymJ",
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"arguments": "{\"latitude\":48.8566,\"longitude\":2.3522}"
|
|
}
|
|
}
|
|
|
|
"""
|
|
function: dict = _tool_use_definition.get("function") or {}
|
|
tool_call_chunk = ChatCompletionToolCallChunk(
|
|
id=_tool_use_definition.get("id") or "",
|
|
type=_tool_use_definition.get("type") or "function",
|
|
function=ChatCompletionToolCallFunctionChunk(
|
|
name=function.get("name") or "",
|
|
arguments=function.get("arguments") or "",
|
|
),
|
|
index=0,
|
|
)
|
|
chat_completion_response_message = ChatCompletionResponseMessage(
|
|
tool_calls=[tool_call_chunk],
|
|
role="assistant",
|
|
)
|
|
return [chat_completion_response_message, tool_output_message]
|
|
|
|
return [tool_output_message]
|
|
|
|
@staticmethod
|
|
def _transform_responses_api_content_to_chat_completion_content(
|
|
content: Any,
|
|
) -> Union[str, List[Union[str, Dict[str, Any]]]]:
|
|
"""
|
|
Transform a Responses API content into a Chat Completion content
|
|
"""
|
|
|
|
if isinstance(content, str):
|
|
return content
|
|
elif isinstance(content, list):
|
|
content_list: List[Union[str, Dict[str, Any]]] = []
|
|
for item in content:
|
|
if isinstance(item, str):
|
|
content_list.append(item)
|
|
elif isinstance(item, dict):
|
|
content_list.append(
|
|
{
|
|
"type": LiteLLMCompletionResponsesConfig._get_chat_completion_request_content_type(
|
|
item.get("type") or "text"
|
|
),
|
|
"text": item.get("text"),
|
|
}
|
|
)
|
|
return content_list
|
|
else:
|
|
raise ValueError(f"Invalid content type: {type(content)}")
|
|
|
|
@staticmethod
|
|
def _get_chat_completion_request_content_type(content_type: str) -> str:
|
|
"""
|
|
Get the Chat Completion request content type
|
|
"""
|
|
# Responses API content has `input_` prefix, if it exists, remove it
|
|
if content_type.startswith("input_"):
|
|
return content_type[len("input_") :]
|
|
else:
|
|
return content_type
|
|
|
|
@staticmethod
|
|
def transform_instructions_to_system_message(
|
|
instructions: Optional[str],
|
|
) -> ChatCompletionSystemMessage:
|
|
"""
|
|
Transform a Instructions into a system message
|
|
"""
|
|
return ChatCompletionSystemMessage(role="system", content=instructions or "")
|
|
|
|
@staticmethod
|
|
def transform_responses_api_tools_to_chat_completion_tools(
|
|
tools: Optional[List[FunctionToolParam]],
|
|
) -> List[ChatCompletionToolParam]:
|
|
"""
|
|
Transform a Responses API tools into a Chat Completion tools
|
|
"""
|
|
if tools is None:
|
|
return []
|
|
chat_completion_tools: List[ChatCompletionToolParam] = []
|
|
for tool in tools:
|
|
chat_completion_tools.append(
|
|
ChatCompletionToolParam(
|
|
type="function",
|
|
function=ChatCompletionToolParamFunctionChunk(
|
|
name=tool["name"],
|
|
description=tool.get("description") or "",
|
|
parameters=tool.get("parameters", {}),
|
|
strict=tool.get("strict", False),
|
|
),
|
|
)
|
|
)
|
|
return chat_completion_tools
|
|
|
|
@staticmethod
|
|
def transform_chat_completion_tools_to_responses_tools(
|
|
chat_completion_response: ModelResponse,
|
|
) -> List[OutputFunctionToolCall]:
|
|
"""
|
|
Transform a Chat Completion tools into a Responses API tools
|
|
"""
|
|
all_chat_completion_tools: List[ChatCompletionMessageToolCall] = []
|
|
for choice in chat_completion_response.choices:
|
|
if isinstance(choice, Choices):
|
|
if choice.message.tool_calls:
|
|
all_chat_completion_tools.extend(choice.message.tool_calls)
|
|
for tool_call in choice.message.tool_calls:
|
|
TOOL_CALLS_CACHE.set_cache(
|
|
key=tool_call.id,
|
|
value=tool_call,
|
|
)
|
|
|
|
responses_tools: List[OutputFunctionToolCall] = []
|
|
for tool in all_chat_completion_tools:
|
|
if tool.type == "function":
|
|
function_definition = tool.function
|
|
responses_tools.append(
|
|
OutputFunctionToolCall(
|
|
name=function_definition.name or "",
|
|
arguments=function_definition.get("arguments") or "",
|
|
call_id=tool.id or "",
|
|
id=tool.id or "",
|
|
type="function_call", # critical this is "function_call" to work with tools like openai codex
|
|
status=function_definition.get("status") or "completed",
|
|
)
|
|
)
|
|
return responses_tools
|
|
|
|
@staticmethod
|
|
def transform_chat_completion_response_to_responses_api_response(
|
|
request_input: Union[str, ResponseInputParam],
|
|
responses_api_request: ResponsesAPIOptionalRequestParams,
|
|
chat_completion_response: ModelResponse,
|
|
) -> ResponsesAPIResponse:
|
|
"""
|
|
Transform a Chat Completion response into a Responses API response
|
|
"""
|
|
responses_api_response: ResponsesAPIResponse = ResponsesAPIResponse(
|
|
id=chat_completion_response.id,
|
|
created_at=chat_completion_response.created,
|
|
model=chat_completion_response.model,
|
|
object=chat_completion_response.object,
|
|
error=getattr(chat_completion_response, "error", None),
|
|
incomplete_details=getattr(
|
|
chat_completion_response, "incomplete_details", None
|
|
),
|
|
instructions=getattr(chat_completion_response, "instructions", None),
|
|
metadata=getattr(chat_completion_response, "metadata", {}),
|
|
output=LiteLLMCompletionResponsesConfig._transform_chat_completion_choices_to_responses_output(
|
|
chat_completion_response=chat_completion_response,
|
|
choices=getattr(chat_completion_response, "choices", []),
|
|
),
|
|
parallel_tool_calls=getattr(
|
|
chat_completion_response, "parallel_tool_calls", False
|
|
),
|
|
temperature=getattr(chat_completion_response, "temperature", 0),
|
|
tool_choice=getattr(chat_completion_response, "tool_choice", "auto"),
|
|
tools=getattr(chat_completion_response, "tools", []),
|
|
top_p=getattr(chat_completion_response, "top_p", None),
|
|
max_output_tokens=getattr(
|
|
chat_completion_response, "max_output_tokens", None
|
|
),
|
|
previous_response_id=getattr(
|
|
chat_completion_response, "previous_response_id", None
|
|
),
|
|
reasoning=Reasoning(),
|
|
status=getattr(chat_completion_response, "status", "completed"),
|
|
text=ResponseTextConfig(),
|
|
truncation=getattr(chat_completion_response, "truncation", None),
|
|
usage=LiteLLMCompletionResponsesConfig._transform_chat_completion_usage_to_responses_usage(
|
|
chat_completion_response=chat_completion_response
|
|
),
|
|
user=getattr(chat_completion_response, "user", None),
|
|
)
|
|
|
|
RESPONSES_API_SESSION_HANDLER.add_completed_response_to_cache(
|
|
response_id=responses_api_response.id,
|
|
session_element=ResponsesAPISessionElement(
|
|
input=request_input,
|
|
output=responses_api_response,
|
|
response_id=responses_api_response.id,
|
|
previous_response_id=responses_api_request.get("previous_response_id"),
|
|
),
|
|
)
|
|
return responses_api_response
|
|
|
|
@staticmethod
|
|
def _transform_chat_completion_choices_to_responses_output(
|
|
chat_completion_response: ModelResponse,
|
|
choices: List[Choices],
|
|
) -> List[Union[GenericResponseOutputItem, OutputFunctionToolCall]]:
|
|
responses_output: List[
|
|
Union[GenericResponseOutputItem, OutputFunctionToolCall]
|
|
] = []
|
|
for choice in choices:
|
|
responses_output.append(
|
|
GenericResponseOutputItem(
|
|
type="message",
|
|
id=chat_completion_response.id,
|
|
status=choice.finish_reason,
|
|
role=choice.message.role,
|
|
content=[
|
|
LiteLLMCompletionResponsesConfig._transform_chat_message_to_response_output_text(
|
|
choice.message
|
|
)
|
|
],
|
|
)
|
|
)
|
|
|
|
tool_calls = LiteLLMCompletionResponsesConfig.transform_chat_completion_tools_to_responses_tools(
|
|
chat_completion_response=chat_completion_response
|
|
)
|
|
responses_output.extend(tool_calls)
|
|
return responses_output
|
|
|
|
@staticmethod
|
|
def _transform_responses_api_outputs_to_chat_completion_messages(
|
|
responses_api_output: ResponsesAPIResponse,
|
|
) -> List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
]
|
|
]:
|
|
messages: List[
|
|
Union[
|
|
AllMessageValues,
|
|
GenericChatCompletionMessage,
|
|
ChatCompletionMessageToolCall,
|
|
]
|
|
] = []
|
|
output_items = responses_api_output.output
|
|
for _output_item in output_items:
|
|
output_item: dict = dict(_output_item)
|
|
if output_item.get("type") == "function_call":
|
|
# handle function call output
|
|
messages.append(
|
|
LiteLLMCompletionResponsesConfig._transform_responses_output_tool_call_to_chat_completion_output_tool_call(
|
|
tool_call=output_item
|
|
)
|
|
)
|
|
else:
|
|
# transform as generic ResponseOutputItem
|
|
messages.append(
|
|
GenericChatCompletionMessage(
|
|
role=str(output_item.get("role")) or "user",
|
|
content=LiteLLMCompletionResponsesConfig._transform_responses_api_content_to_chat_completion_content(
|
|
output_item.get("content")
|
|
),
|
|
)
|
|
)
|
|
return messages
|
|
|
|
@staticmethod
|
|
def _transform_responses_output_tool_call_to_chat_completion_output_tool_call(
|
|
tool_call: dict,
|
|
) -> ChatCompletionMessageToolCall:
|
|
return ChatCompletionMessageToolCall(
|
|
id=tool_call.get("id") or "",
|
|
type="function",
|
|
function=Function(
|
|
name=tool_call.get("name") or "",
|
|
arguments=tool_call.get("arguments") or "",
|
|
),
|
|
)
|
|
|
|
@staticmethod
|
|
def _transform_chat_message_to_response_output_text(
|
|
message: Message,
|
|
) -> OutputText:
|
|
return OutputText(
|
|
type="output_text",
|
|
text=message.content,
|
|
annotations=LiteLLMCompletionResponsesConfig._transform_chat_completion_annotations_to_response_output_annotations(
|
|
annotations=getattr(message, "annotations", None)
|
|
),
|
|
)
|
|
|
|
@staticmethod
|
|
def _transform_chat_completion_annotations_to_response_output_annotations(
|
|
annotations: Optional[List[ChatCompletionAnnotation]],
|
|
) -> List[GenericResponseOutputItemContentAnnotation]:
|
|
response_output_annotations: List[
|
|
GenericResponseOutputItemContentAnnotation
|
|
] = []
|
|
|
|
if annotations is None:
|
|
return response_output_annotations
|
|
|
|
for annotation in annotations:
|
|
annotation_type = annotation.get("type")
|
|
if annotation_type == "url_citation" and "url_citation" in annotation:
|
|
url_citation = annotation["url_citation"]
|
|
response_output_annotations.append(
|
|
GenericResponseOutputItemContentAnnotation(
|
|
type=annotation_type,
|
|
start_index=url_citation.get("start_index"),
|
|
end_index=url_citation.get("end_index"),
|
|
url=url_citation.get("url"),
|
|
title=url_citation.get("title"),
|
|
)
|
|
)
|
|
# Handle other annotation types here
|
|
|
|
return response_output_annotations
|
|
|
|
@staticmethod
|
|
def _transform_chat_completion_usage_to_responses_usage(
|
|
chat_completion_response: ModelResponse,
|
|
) -> ResponseAPIUsage:
|
|
usage: Optional[Usage] = getattr(chat_completion_response, "usage", None)
|
|
if usage is None:
|
|
return ResponseAPIUsage(
|
|
input_tokens=0,
|
|
output_tokens=0,
|
|
total_tokens=0,
|
|
)
|
|
return ResponseAPIUsage(
|
|
input_tokens=usage.prompt_tokens,
|
|
output_tokens=usage.completion_tokens,
|
|
total_tokens=usage.total_tokens,
|
|
)
|