litellm-mirror/litellm/router.py
2023-11-13 15:16:57 -08:00

202 lines
No EOL
8.2 KiB
Python

from datetime import datetime
from typing import Dict, List, Optional, Union, Literal
import random, threading, time
import litellm
import logging
class Router:
"""
Example usage:
from litellm import Router
model_list = [{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/<your-deployment-name>",
"api_key": <your-api-key>,
"api_version": <your-api-version>,
"api_base": <your-api-base>
},
}]
router = Router(model_list=model_list)
"""
model_names: List = []
cache_responses: bool = False
default_cache_time_seconds: int = 1 * 60 * 60 # 1 hour
def __init__(self,
model_list: Optional[list] = None,
redis_host: Optional[str] = None,
redis_port: Optional[int] = None,
redis_password: Optional[str] = None,
cache_responses: bool = False,
routing_strategy: Literal["simple-shuffle", "least-busy"] = "simple-shuffle") -> None:
if model_list:
self.set_model_list(model_list)
self.healthy_deployments: List = self.model_list
self.routing_strategy = routing_strategy
### HEALTH CHECK THREAD ###
if self.routing_strategy == "least-busy":
self._start_health_check_thread()
### CACHING ###
if redis_host is not None and redis_port is not None and redis_password is not None:
cache_config = {
'type': 'redis',
'host': redis_host,
'port': redis_port,
'password': redis_password
}
else: # use an in-memory cache
cache_config = {
"type": "local"
}
if cache_responses:
litellm.cache = litellm.Cache(**cache_config) # use Redis for caching completion requests
self.cache_responses = cache_responses
self.chat = litellm.Chat(params={})
def _start_health_check_thread(self):
"""
Starts a separate thread to perform health checks periodically.
"""
health_check_thread = threading.Thread(target=self._perform_health_checks, daemon=True)
health_check_thread.start()
def _perform_health_checks(self):
"""
Periodically performs health checks on the servers.
Updates the list of healthy servers accordingly.
"""
while True:
self.healthy_deployments = self._health_check()
# Adjust the time interval based on your needs
time.sleep(15)
def _health_check(self):
"""
Performs a health check on the deployments
Returns the list of healthy deployments
"""
healthy_deployments = []
for deployment in self.model_list:
litellm_args = deployment["litellm_params"]
try:
start_time = time.time()
litellm.completion(messages=[{"role": "user", "content": ""}], max_tokens=1, **litellm_args) # hit the server with a blank message to see how long it takes to respond
end_time = time.time()
response_time = end_time - start_time
logging.debug(f"response_time: {response_time}")
healthy_deployments.append((deployment, response_time))
healthy_deployments.sort(key=lambda x: x[1])
except Exception as e:
pass
return healthy_deployments
def set_model_list(self, model_list: list):
self.model_list = model_list
self.model_names = [m["model_name"] for m in model_list]
def get_model_names(self):
return self.model_names
def get_available_deployment(self,
model: str,
messages: Optional[List[Dict[str, str]]] = None,
input: Optional[Union[str, List]] = None):
"""
Returns the deployment with the shortest queue
"""
logging.debug(f"self.healthy_deployments: {self.healthy_deployments}")
if self.routing_strategy == "least-busy":
if len(self.healthy_deployments) > 0:
for item in self.healthy_deployments:
if item[0]["model_name"] == model: # first one in queue will be the one with the most availability
return item[0]
else:
raise ValueError("No models available.")
elif self.routing_strategy == "simple-shuffle":
potential_deployments = []
for item in self.model_list:
if item["model_name"] == model:
potential_deployments.append(item)
item = random.choice(potential_deployments)
return item or item[0]
raise ValueError("No models available.")
### COMPLETION + EMBEDDING FUNCTIONS
def completion(self,
model: str,
messages: List[Dict[str, str]],
is_retry: Optional[bool] = False,
is_fallback: Optional[bool] = False,
**kwargs):
"""
Example usage:
response = router.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}]
"""
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, messages=messages)
data = deployment["litellm_params"]
# call via litellm.completion()
# return litellm.completion(**{**data, "messages": messages, "caching": self.cache_responses, **kwargs})
# litellm.set_verbose = True
return litellm.completion(**{**data, "messages": messages, "caching": self.cache_responses, **kwargs})
async def acompletion(self,
model: str,
messages: List[Dict[str, str]],
is_retry: Optional[bool] = False,
is_fallback: Optional[bool] = False,
**kwargs):
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, messages=messages)
data = deployment["litellm_params"]
return await litellm.acompletion(**{**data, "messages": messages, "caching": self.cache_responses, **kwargs})
def text_completion(self,
model: str,
prompt: str,
is_retry: Optional[bool] = False,
is_fallback: Optional[bool] = False,
is_async: Optional[bool] = False,
**kwargs):
messages=[{"role": "user", "content": prompt}]
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, messages=messages)
data = deployment["litellm_params"]
# call via litellm.completion()
return litellm.text_completion(**{**data, "prompt": prompt, "caching": self.cache_responses, **kwargs}) # type: ignore
def embedding(self,
model: str,
input: Union[str, List],
is_async: Optional[bool] = False,
**kwargs) -> Union[List[float], None]:
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, input=input)
data = deployment["litellm_params"]
# call via litellm.embedding()
return litellm.embedding(**{**data, "input": input, "caching": self.cache_responses, **kwargs})
async def aembedding(self,
model: str,
input: Union[str, List],
is_async: Optional[bool] = True,
**kwargs) -> Union[List[float], None]:
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, input=input)
data = deployment["litellm_params"]
return await litellm.aembedding(**{**data, "input": input, "caching": self.cache_responses, **kwargs})