mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* fix(core_helpers.py): return None, instead of raising kwargs is None error Closes https://github.com/BerriAI/litellm/issues/6500 * docs(cost_tracking.md): cleanup doc * fix(vertex_and_google_ai_studio.py): handle function call with no params passed in Closes https://github.com/BerriAI/litellm/issues/6495 * test(test_router_timeout.py): add test for router timeout + retry logic * test: update test to use module level values * (fix) Prometheus - Log Postgres DB latency, status on prometheus (#6484) * fix logging DB fails on prometheus * unit testing log to otel wrapper * unit testing for service logger + prometheus * use LATENCY buckets for service logging * fix service logging * docs clarify vertex vs gemini * (router_strategy/) ensure all async functions use async cache methods (#6489) * fix router strat * use async set / get cache in router_strategy * add coverage for router strategy * fix imports * fix batch_get_cache * use async methods for least busy * fix least busy use async methods * fix test_dual_cache_increment * test async_get_available_deployment when routing_strategy="least-busy" * (fix) proxy - fix when `STORE_MODEL_IN_DB` should be set (#6492) * set store_model_in_db at the top * correctly use store_model_in_db global * (fix) `PrometheusServicesLogger` `_get_metric` should return metric in Registry (#6486) * fix logging DB fails on prometheus * unit testing log to otel wrapper * unit testing for service logger + prometheus * use LATENCY buckets for service logging * fix service logging * fix _get_metric in prom services logger * add clear doc string * unit testing for prom service logger * bump: version 1.51.0 → 1.51.1 * Add `azure/gpt-4o-mini-2024-07-18` to model_prices_and_context_window.json (#6477) * Update utils.py (#6468) Fixed missing keys * (perf) Litellm redis router fix - ~100ms improvement (#6483) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * refactor: pass parent_otel_span for redis caching calls in router allows for more observability into what calls are causing latency issues * test: update tests with new params * refactor: ensure e2e otel tracing for router * refactor(router.py): add more otel tracing acrosss router catch all latency issues for router requests * fix: fix linting error * fix(router.py): fix linting error * fix: fix test * test: fix tests * fix(dual_cache.py): pass ttl to redis cache * fix: fix param * perf(cooldown_cache.py): improve cooldown cache, to store cache results in memory for 5s, prevents redis call from being made on each request reduces 100ms latency per call with caching enabled on router * fix: fix test * fix(cooldown_cache.py): handle if a result is None * fix(cooldown_cache.py): add debug statements * refactor(dual_cache.py): move to using an in-memory check for batch get cache, to prevent redis from being hit for every call * fix(cooldown_cache.py): fix linting erropr * refactor(prometheus.py): move to using standard logging payload for reading the remaining request / tokens Ensures prometheus token tracking works for anthropic as well * fix: fix linting error * fix(redis_cache.py): make sure ttl is always int (handle float values) Fixes issue where redis_client.ex was not working correctly due to float ttl * fix: fix linting error * test: update test * fix: fix linting error --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Xingyao Wang <xingyao@all-hands.dev> Co-authored-by: vibhanshu-ob <115142120+vibhanshu-ob@users.noreply.github.com>
50 lines
1.2 KiB
Python
50 lines
1.2 KiB
Python
"""
|
|
Base Cache implementation. All cache implementations should inherit from this class.
|
|
|
|
Has 4 methods:
|
|
- set_cache
|
|
- get_cache
|
|
- async_set_cache
|
|
- async_get_cache
|
|
"""
|
|
|
|
from typing import TYPE_CHECKING, Any, Optional
|
|
|
|
if TYPE_CHECKING:
|
|
from opentelemetry.trace import Span as _Span
|
|
|
|
Span = _Span
|
|
else:
|
|
Span = Any
|
|
|
|
|
|
class BaseCache:
|
|
def __init__(self, default_ttl: int = 60):
|
|
self.default_ttl = default_ttl
|
|
|
|
def get_ttl(self, **kwargs) -> Optional[int]:
|
|
kwargs_ttl: Optional[int] = kwargs.get("ttl")
|
|
if kwargs_ttl is not None:
|
|
try:
|
|
return int(kwargs_ttl)
|
|
except ValueError:
|
|
return self.default_ttl
|
|
return self.default_ttl
|
|
|
|
def set_cache(self, key, value, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
async def async_set_cache(self, key, value, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
def get_cache(self, key, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
async def async_get_cache(self, key, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
async def batch_cache_write(self, key, value, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
async def disconnect(self):
|
|
raise NotImplementedError
|