litellm-mirror/litellm/llms/anthropic.py
2023-08-23 11:07:45 +02:00

129 lines
4.8 KiB
Python

import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman:"
AI_PROMPT = "\n\nAssistant:"
class AnthropicError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(self.message) # Call the base class constructor with the parameters it needs
class AnthropicLLM:
def __init__(self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None):
self.encoding = encoding
self.default_max_tokens_to_sample = default_max_tokens_to_sample
self.completion_url = "https://api.anthropic.com/v1/complete"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(self, api_key): # set up the environment required to run the model
# set the api key
if self.api_key is None:
raise ValueError(
"Missing Anthropic API Key -"
+ " A call is being made to anthropic but no key is set either"
+ " in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
"accept": "application/json",
"anthropic-version": "2023-06-01",
"content-type": "application/json",
"x-api-key": self.api_key,
}
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
else:
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
else:
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
if "max_tokens" in optional_params and optional_params["max_tokens"] != float("inf"):
max_tokens = optional_params["max_tokens"]
else:
max_tokens = self.default_max_tokens_to_sample
data = {
"model": model,
"prompt": prompt,
"max_tokens_to_sample": max_tokens,
**optional_params,
}
# LOGGING
self.logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
additional_args={"complete_input_dict": data},
)
# COMPLETION CALL
response = requests.post(
self.completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"]
)
print(optional_params)
if "stream" in optional_params and optional_params["stream"] is True:
print("IS STREAMING")
return response.iter_lines()
else:
# LOGGING
self.logging_obj.post_call(
input=prompt,
api_key=self.api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
# RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AnthropicError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
model_response["choices"][0]["message"]["content"] = completion_response["completion"]
# CALCULATING USAGE
prompt_tokens = len(self.encoding.encode(prompt)) # [TODO] use the anthropic tokenizer here
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
) # [TODO] use the anthropic tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
pass