litellm-mirror/litellm/llms/bedrock.py

1521 lines
55 KiB
Python

####################################
######### DEPRECATED FILE ##########
####################################
# logic moved to `bedrock_httpx.py` #
import copy
import json
import os
import time
import types
import uuid
from enum import Enum
from typing import Any, Callable, List, Optional, Union
import httpx
import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.types.utils import ImageResponse, ModelResponse, Usage
from litellm.utils import get_secret
from .prompt_templates.factory import (
construct_tool_use_system_prompt,
contains_tag,
custom_prompt,
extract_between_tags,
parse_xml_params,
prompt_factory,
)
class BedrockError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://us-west-2.console.aws.amazon.com/bedrock"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AmazonBedrockGlobalConfig:
def __init__(self):
pass
def get_mapped_special_auth_params(self) -> dict:
"""
Mapping of common auth params across bedrock/vertex/azure/watsonx
"""
return {"region_name": "aws_region_name"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
mapped_params = self.get_mapped_special_auth_params()
for param, value in non_default_params.items():
if param in mapped_params:
optional_params[mapped_params[param]] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://www.aws-services.info/bedrock.html
"""
return [
"eu-west-1",
"eu-west-3",
"eu-central-1",
]
class AmazonTitanConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-text-express-v1
Supported Params for the Amazon Titan models:
- `maxTokenCount` (integer) max tokens,
- `stopSequences` (string[]) list of stop sequence strings
- `temperature` (float) temperature for model,
- `topP` (int) top p for model
"""
maxTokenCount: Optional[int] = None
stopSequences: Optional[list] = None
temperature: Optional[float] = None
topP: Optional[int] = None
def __init__(
self,
maxTokenCount: Optional[int] = None,
stopSequences: Optional[list] = None,
temperature: Optional[float] = None,
topP: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonAnthropicClaude3Config:
"""
Reference:
https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
https://docs.anthropic.com/claude/docs/models-overview#model-comparison
Supported Params for the Amazon / Anthropic Claude 3 models:
- `max_tokens` Required (integer) max tokens. Default is 4096
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
- `temperature` Optional (float) The amount of randomness injected into the response
- `top_p` Optional (float) Use nucleus sampling.
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
"""
max_tokens: Optional[int] = 4096 # Opus, Sonnet, and Haiku default
anthropic_version: Optional[str] = "bedrock-2023-05-31"
system: Optional[str] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
stop_sequences: Optional[List[str]] = None
def __init__(
self,
max_tokens: Optional[int] = None,
anthropic_version: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"max_tokens",
"tools",
"tool_choice",
"stream",
"stop",
"temperature",
"top_p",
"extra_headers",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream":
optional_params["stream"] = value
if param == "stop":
optional_params["stop_sequences"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
return optional_params
class AmazonAnthropicConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
Supported Params for the Amazon / Anthropic models:
- `max_tokens_to_sample` (integer) max tokens,
- `temperature` (float) model temperature,
- `top_k` (integer) top k,
- `top_p` (integer) top p,
- `stop_sequences` (string[]) list of stop sequences - e.g. ["\\n\\nHuman:"],
- `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
"""
max_tokens_to_sample: Optional[int] = litellm.max_tokens
stop_sequences: Optional[list] = None
temperature: Optional[float] = None
top_k: Optional[int] = None
top_p: Optional[int] = None
anthropic_version: Optional[str] = None
def __init__(
self,
max_tokens_to_sample: Optional[int] = None,
stop_sequences: Optional[list] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
anthropic_version: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(
self,
):
return ["max_tokens", "temperature", "stop", "top_p", "stream"]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens_to_sample"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stop":
optional_params["stop_sequences"] = value
if param == "stream" and value == True:
optional_params["stream"] = value
return optional_params
class AmazonCohereConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=command
Supported Params for the Amazon / Cohere models:
- `max_tokens` (integer) max tokens,
- `temperature` (float) model temperature,
- `return_likelihood` (string) n/a
"""
max_tokens: Optional[int] = None
temperature: Optional[float] = None
return_likelihood: Optional[str] = None
def __init__(
self,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
return_likelihood: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonAI21Config:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
Supported Params for the Amazon / AI21 models:
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`.
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding.
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass.
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional.
- `frequencyPenalty` (object): Placeholder for frequency penalty object.
- `presencePenalty` (object): Placeholder for presence penalty object.
- `countPenalty` (object): Placeholder for count penalty object.
"""
maxTokens: Optional[int] = None
temperature: Optional[float] = None
topP: Optional[float] = None
stopSequences: Optional[list] = None
frequencePenalty: Optional[dict] = None
presencePenalty: Optional[dict] = None
countPenalty: Optional[dict] = None
def __init__(
self,
maxTokens: Optional[int] = None,
temperature: Optional[float] = None,
topP: Optional[float] = None,
stopSequences: Optional[list] = None,
frequencePenalty: Optional[dict] = None,
presencePenalty: Optional[dict] = None,
countPenalty: Optional[dict] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
class AmazonLlamaConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=meta.llama2-13b-chat-v1
Supported Params for the Amazon / Meta Llama models:
- `max_gen_len` (integer) max tokens,
- `temperature` (float) temperature for model,
- `top_p` (float) top p for model
"""
max_gen_len: Optional[int] = None
temperature: Optional[float] = None
topP: Optional[float] = None
def __init__(
self,
maxTokenCount: Optional[int] = None,
temperature: Optional[float] = None,
topP: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonMistralConfig:
"""
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral.html
Supported Params for the Amazon / Mistral models:
- `max_tokens` (integer) max tokens,
- `temperature` (float) temperature for model,
- `top_p` (float) top p for model
- `stop` [string] A list of stop sequences that if generated by the model, stops the model from generating further output.
- `top_k` (float) top k for model
"""
max_tokens: Optional[int] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[float] = None
stop: Optional[List[str]] = None
def __init__(
self,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
top_p: Optional[int] = None,
top_k: Optional[float] = None,
stop: Optional[List[str]] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
class AmazonStabilityConfig:
"""
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
Supported Params for the Amazon / Stable Diffusion models:
- `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
- `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed)
- `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run.
- `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64.
Engine-specific dimension validation:
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
- SDXL v1.0: same as SDXL v0.9
- SD v1.6: must be between 320x320 and 1536x1536
- `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64.
Engine-specific dimension validation:
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
- SDXL v1.0: same as SDXL v0.9
- SD v1.6: must be between 320x320 and 1536x1536
"""
cfg_scale: Optional[int] = None
seed: Optional[float] = None
steps: Optional[List[str]] = None
width: Optional[int] = None
height: Optional[int] = None
def __init__(
self,
cfg_scale: Optional[int] = None,
seed: Optional[float] = None,
steps: Optional[List[str]] = None,
width: Optional[int] = None,
height: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def add_custom_header(headers):
"""Closure to capture the headers and add them."""
def callback(request, **kwargs):
"""Actual callback function that Boto3 will call."""
for header_name, header_value in headers.items():
request.headers.add_header(header_name, header_value)
return callback
def init_bedrock_client(
region_name=None,
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_region_name: Optional[str] = None,
aws_bedrock_runtime_endpoint: Optional[str] = None,
aws_session_name: Optional[str] = None,
aws_profile_name: Optional[str] = None,
aws_role_name: Optional[str] = None,
aws_web_identity_token: Optional[str] = None,
extra_headers: Optional[dict] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
):
# check for custom AWS_REGION_NAME and use it if not passed to init_bedrock_client
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
standard_aws_region_name = get_secret("AWS_REGION", None)
## CHECK IS 'os.environ/' passed in
# Define the list of parameters to check
params_to_check = [
aws_access_key_id,
aws_secret_access_key,
aws_region_name,
aws_bedrock_runtime_endpoint,
aws_session_name,
aws_profile_name,
aws_role_name,
aws_web_identity_token,
]
# Iterate over parameters and update if needed
for i, param in enumerate(params_to_check):
if param and param.startswith("os.environ/"):
params_to_check[i] = get_secret(param)
# Assign updated values back to parameters
(
aws_access_key_id,
aws_secret_access_key,
aws_region_name,
aws_bedrock_runtime_endpoint,
aws_session_name,
aws_profile_name,
aws_role_name,
aws_web_identity_token,
) = params_to_check
### SET REGION NAME
if region_name:
pass
elif aws_region_name:
region_name = aws_region_name
elif litellm_aws_region_name:
region_name = litellm_aws_region_name
elif standard_aws_region_name:
region_name = standard_aws_region_name
else:
raise BedrockError(
message="AWS region not set: set AWS_REGION_NAME or AWS_REGION env variable or in .env file",
status_code=401,
)
# check for custom AWS_BEDROCK_RUNTIME_ENDPOINT and use it if not passed to init_bedrock_client
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
if aws_bedrock_runtime_endpoint:
endpoint_url = aws_bedrock_runtime_endpoint
elif env_aws_bedrock_runtime_endpoint:
endpoint_url = env_aws_bedrock_runtime_endpoint
else:
endpoint_url = f"https://bedrock-runtime.{region_name}.amazonaws.com"
import boto3
if isinstance(timeout, float):
config = boto3.session.Config(connect_timeout=timeout, read_timeout=timeout)
elif isinstance(timeout, httpx.Timeout):
config = boto3.session.Config(
connect_timeout=timeout.connect, read_timeout=timeout.read
)
else:
config = boto3.session.Config()
### CHECK STS ###
if (
aws_web_identity_token is not None
and aws_role_name is not None
and aws_session_name is not None
):
oidc_token = get_secret(aws_web_identity_token)
if oidc_token is None:
raise BedrockError(
message="OIDC token could not be retrieved from secret manager.",
status_code=401,
)
sts_client = boto3.client("sts")
# https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
# https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sts/client/assume_role_with_web_identity.html
sts_response = sts_client.assume_role_with_web_identity(
RoleArn=aws_role_name,
RoleSessionName=aws_session_name,
WebIdentityToken=oidc_token,
DurationSeconds=3600,
)
client = boto3.client(
service_name="bedrock-runtime",
aws_access_key_id=sts_response["Credentials"]["AccessKeyId"],
aws_secret_access_key=sts_response["Credentials"]["SecretAccessKey"],
aws_session_token=sts_response["Credentials"]["SessionToken"],
region_name=region_name,
endpoint_url=endpoint_url,
config=config,
)
elif aws_role_name is not None and aws_session_name is not None:
# use sts if role name passed in
sts_client = boto3.client(
"sts",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
)
sts_response = sts_client.assume_role(
RoleArn=aws_role_name, RoleSessionName=aws_session_name
)
client = boto3.client(
service_name="bedrock-runtime",
aws_access_key_id=sts_response["Credentials"]["AccessKeyId"],
aws_secret_access_key=sts_response["Credentials"]["SecretAccessKey"],
aws_session_token=sts_response["Credentials"]["SessionToken"],
region_name=region_name,
endpoint_url=endpoint_url,
config=config,
)
elif aws_access_key_id is not None:
# uses auth params passed to completion
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
client = boto3.client(
service_name="bedrock-runtime",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=region_name,
endpoint_url=endpoint_url,
config=config,
)
elif aws_profile_name is not None:
# uses auth values from AWS profile usually stored in ~/.aws/credentials
client = boto3.Session(profile_name=aws_profile_name).client(
service_name="bedrock-runtime",
region_name=region_name,
endpoint_url=endpoint_url,
config=config,
)
else:
# aws_access_key_id is None, assume user is trying to auth using env variables
# boto3 automatically reads env variables
client = boto3.client(
service_name="bedrock-runtime",
region_name=region_name,
endpoint_url=endpoint_url,
config=config,
)
if extra_headers:
client.meta.events.register(
"before-sign.bedrock-runtime.*", add_custom_header(extra_headers)
)
return client
def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
# handle anthropic prompts and amazon titan prompts
chat_template_provider = ["anthropic", "amazon", "mistral", "meta"]
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
if provider in chat_template_provider:
prompt = prompt_factory(
model=model, messages=messages, custom_llm_provider="bedrock"
)
else:
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
return prompt
"""
BEDROCK AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
def completion(
model: str,
messages: list,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
timeout=None,
extra_headers: Optional[dict] = None,
):
exception_mapping_worked = False
_is_function_call = False
json_schemas: dict = {}
try:
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
aws_bedrock_runtime_endpoint = optional_params.pop(
"aws_bedrock_runtime_endpoint", None
)
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
client = optional_params.pop("aws_bedrock_client", None)
# only init client, if user did not pass one
if client is None:
client = init_bedrock_client(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
aws_role_name=aws_role_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_web_identity_token=aws_web_identity_token,
extra_headers=extra_headers,
timeout=timeout,
)
model = model
modelId = (
optional_params.pop("model_id", None) or model
) # default to model if not passed
provider = model.split(".")[0]
prompt = convert_messages_to_prompt(
model, messages, provider, custom_prompt_dict
)
inference_params = copy.deepcopy(optional_params)
stream = inference_params.pop("stream", False)
if provider == "anthropic":
if model.startswith("anthropic.claude-3"):
# Separate system prompt from rest of message
system_prompt_idx: list[int] = []
system_messages: list[str] = []
for idx, message in enumerate(messages):
if message["role"] == "system":
system_messages.append(message["content"])
system_prompt_idx.append(idx)
if len(system_prompt_idx) > 0:
inference_params["system"] = "\n".join(system_messages)
messages = [
i for j, i in enumerate(messages) if j not in system_prompt_idx
]
# Format rest of message according to anthropic guidelines
messages = prompt_factory(
model=model, messages=messages, custom_llm_provider="anthropic_xml"
)
## LOAD CONFIG
config = litellm.AmazonAnthropicClaude3Config.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
## Handle Tool Calling
if "tools" in inference_params:
_is_function_call = True
for tool in inference_params["tools"]:
json_schemas[tool["function"]["name"]] = tool["function"].get(
"parameters", None
)
tool_calling_system_prompt = construct_tool_use_system_prompt(
tools=inference_params["tools"]
)
inference_params["system"] = (
inference_params.get("system", "\n")
+ tool_calling_system_prompt
) # add the anthropic tool calling prompt to the system prompt
inference_params.pop("tools")
data = json.dumps({"messages": messages, **inference_params})
else:
## LOAD CONFIG
config = litellm.AmazonAnthropicConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "ai21":
## LOAD CONFIG
config = litellm.AmazonAI21Config.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "cohere":
## LOAD CONFIG
config = litellm.AmazonCohereConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
if optional_params.get("stream", False) == True:
inference_params["stream"] = (
True # cohere requires stream = True in inference params
)
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "meta":
## LOAD CONFIG
config = litellm.AmazonLlamaConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
elif provider == "amazon": # amazon titan
## LOAD CONFIG
config = litellm.AmazonTitanConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps(
{
"inputText": prompt,
"textGenerationConfig": inference_params,
}
)
elif provider == "mistral":
## LOAD CONFIG
config = litellm.AmazonMistralConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = json.dumps({"prompt": prompt, **inference_params})
else:
data = json.dumps({})
## COMPLETION CALL
accept = "application/json"
contentType = "application/json"
if stream == True and _is_function_call == False:
if provider == "ai21":
## LOGGING
request_str = f"""
response = client.invoke_model(
body={data},
modelId={modelId},
accept=accept,
contentType=contentType
)
"""
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = client.invoke_model(
body=data, modelId=modelId, accept=accept, contentType=contentType
)
response = response.get("body").read()
return response
else:
## LOGGING
request_str = f"""
response = client.invoke_model_with_response_stream(
body={data},
modelId={modelId},
accept=accept,
contentType=contentType
)
"""
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = client.invoke_model_with_response_stream(
body=data, modelId=modelId, accept=accept, contentType=contentType
)
response = response.get("body")
return response
try:
## LOGGING
request_str = f"""
response = client.invoke_model(
body={data},
modelId={modelId},
accept=accept,
contentType=contentType
)
"""
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": data,
"request_str": request_str,
},
)
response = client.invoke_model(
body=data, modelId=modelId, accept=accept, contentType=contentType
)
except client.exceptions.ValidationException as e:
if "The provided model identifier is invalid" in str(e):
raise BedrockError(status_code=404, message=str(e))
raise BedrockError(status_code=400, message=str(e))
except Exception as e:
raise BedrockError(status_code=500, message=str(e))
response_body = json.loads(response.get("body").read())
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=json.dumps(response_body),
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response_body}")
## RESPONSE OBJECT
outputText = "default"
if provider == "ai21":
outputText = response_body.get("completions")[0].get("data").get("text")
elif provider == "anthropic":
if model.startswith("anthropic.claude-3"):
outputText = response_body.get("content")[0].get("text", None)
if outputText is not None and contains_tag(
"invoke", outputText
): # OUTPUT PARSE FUNCTION CALL
function_name = extract_between_tags("tool_name", outputText)[0]
function_arguments_str = extract_between_tags("invoke", outputText)[
0
].strip()
function_arguments_str = (
f"<invoke>{function_arguments_str}</invoke>"
)
function_arguments = parse_xml_params(
function_arguments_str,
json_schema=json_schemas.get(
function_name, None
), # check if we have a json schema for this function name)
)
_message = litellm.Message(
tool_calls=[
{
"id": f"call_{uuid.uuid4()}",
"type": "function",
"function": {
"name": function_name,
"arguments": json.dumps(function_arguments),
},
}
],
content=None,
)
model_response.choices[0].message = _message # type: ignore
model_response._hidden_params["original_response"] = (
outputText # allow user to access raw anthropic tool calling response
)
if _is_function_call == True and stream is not None and stream == True:
print_verbose(
f"INSIDE BEDROCK STREAMING TOOL CALLING CONDITION BLOCK"
)
# return an iterator
streaming_model_response = ModelResponse(stream=True)
streaming_model_response.choices[0].finish_reason = (
model_response.choices[0].finish_reason
)
# streaming_model_response.choices = [litellm.utils.StreamingChoices()]
streaming_choice = litellm.utils.StreamingChoices()
streaming_choice.index = model_response.choices[0].index
_tool_calls = []
print_verbose(
f"type of model_response.choices[0]: {type(model_response.choices[0])}"
)
print_verbose(f"type of streaming_choice: {type(streaming_choice)}")
if isinstance(model_response.choices[0], litellm.Choices):
if getattr(
model_response.choices[0].message, "tool_calls", None
) is not None and isinstance(
model_response.choices[0].message.tool_calls, list
):
for tool_call in model_response.choices[
0
].message.tool_calls:
_tool_call = {**tool_call.dict(), "index": 0}
_tool_calls.append(_tool_call)
delta_obj = litellm.utils.Delta(
content=getattr(
model_response.choices[0].message, "content", None
),
role=model_response.choices[0].message.role,
tool_calls=_tool_calls,
)
streaming_choice.delta = delta_obj
streaming_model_response.choices = [streaming_choice]
completion_stream = ModelResponseIterator(
model_response=streaming_model_response
)
print_verbose(
f"Returns anthropic CustomStreamWrapper with 'cached_response' streaming object"
)
return litellm.CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="cached_response",
logging_obj=logging_obj,
)
model_response.choices[0].finish_reason = map_finish_reason(
response_body["stop_reason"]
)
_usage = litellm.Usage(
prompt_tokens=response_body["usage"]["input_tokens"],
completion_tokens=response_body["usage"]["output_tokens"],
total_tokens=response_body["usage"]["input_tokens"]
+ response_body["usage"]["output_tokens"],
)
setattr(model_response, "usage", _usage)
else:
outputText = response_body["completion"]
model_response.choices[0].finish_reason = response_body["stop_reason"]
elif provider == "cohere":
outputText = response_body["generations"][0]["text"]
elif provider == "meta":
outputText = response_body["generation"]
elif provider == "mistral":
outputText = response_body["outputs"][0]["text"]
model_response.choices[0].finish_reason = response_body["outputs"][0][
"stop_reason"
]
else: # amazon titan
outputText = response_body.get("results")[0].get("outputText")
response_metadata = response.get("ResponseMetadata", {})
if response_metadata.get("HTTPStatusCode", 500) >= 400:
raise BedrockError(
message=outputText,
status_code=response_metadata.get("HTTPStatusCode", 500),
)
else:
try:
if (
len(outputText) > 0
and hasattr(model_response.choices[0], "message")
and getattr(model_response.choices[0].message, "tool_calls", None)
is None
):
model_response.choices[0].message.content = outputText
elif (
hasattr(model_response.choices[0], "message")
and getattr(model_response.choices[0].message, "tool_calls", None)
is not None
):
pass
else:
raise Exception()
except:
raise BedrockError(
message=json.dumps(outputText),
status_code=response_metadata.get("HTTPStatusCode", 500),
)
## CALCULATING USAGE - bedrock charges on time, not tokens - have some mapping of cost here.
if not hasattr(model_response, "usage"):
setattr(model_response, "usage", Usage())
if getattr(model_response.usage, "total_tokens", None) is None: # type: ignore
prompt_tokens = response_metadata.get(
"x-amzn-bedrock-input-token-count", len(encoding.encode(prompt))
)
_text_response = model_response["choices"][0]["message"].get("content", "")
completion_tokens = response_metadata.get(
"x-amzn-bedrock-output-token-count",
len(
encoding.encode(
_text_response,
disallowed_special=(),
)
),
)
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
model_response.created = int(time.time())
model_response.model = model
model_response._hidden_params["region_name"] = client.meta.region_name
print_verbose(f"model_response._hidden_params: {model_response._hidden_params}")
return model_response
except BedrockError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise BedrockError(status_code=500, message=traceback.format_exc())
class ModelResponseIterator:
def __init__(self, model_response):
self.model_response = model_response
self.is_done = False
# Sync iterator
def __iter__(self):
return self
def __next__(self):
if self.is_done:
raise StopIteration
self.is_done = True
return self.model_response
# Async iterator
def __aiter__(self):
return self
async def __anext__(self):
if self.is_done:
raise StopAsyncIteration
self.is_done = True
return self.model_response
def _embedding_func_single(
model: str,
input: str,
client: Any,
optional_params=None,
encoding=None,
logging_obj=None,
):
if isinstance(input, str) is False:
raise BedrockError(
message="Bedrock Embedding API input must be type str | List[str]",
status_code=400,
)
# logic for parsing in - calling - parsing out model embedding calls
## FORMAT EMBEDDING INPUT ##
provider = model.split(".")[0]
inference_params = copy.deepcopy(optional_params)
inference_params.pop(
"user", None
) # make sure user is not passed in for bedrock call
modelId = (
optional_params.pop("model_id", None) or model
) # default to model if not passed
if provider == "amazon":
input = input.replace(os.linesep, " ")
data = {"inputText": input, **inference_params}
# data = json.dumps(data)
elif provider == "cohere":
inference_params["input_type"] = inference_params.get(
"input_type", "search_document"
) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
data = {"texts": [input], **inference_params} # type: ignore
body = json.dumps(data).encode("utf-8") # type: ignore
## LOGGING
request_str = f"""
response = client.invoke_model(
body={body},
modelId={modelId},
accept="*/*",
contentType="application/json",
)""" # type: ignore
logging_obj.pre_call(
input=input,
api_key="", # boto3 is used for init.
additional_args={
"complete_input_dict": {"model": modelId, "texts": input},
"request_str": request_str,
},
)
try:
response = client.invoke_model(
body=body,
modelId=modelId,
accept="*/*",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
## LOGGING
logging_obj.post_call(
input=input,
api_key="",
additional_args={"complete_input_dict": data},
original_response=json.dumps(response_body),
)
if provider == "cohere":
response = response_body.get("embeddings")
# flatten list
response = [item for sublist in response for item in sublist]
return response
elif provider == "amazon":
return response_body.get("embedding")
except Exception as e:
raise BedrockError(
message=f"Embedding Error with model {model}: {e}", status_code=500
)
def embedding(
model: str,
input: Union[list, str],
model_response: litellm.EmbeddingResponse,
api_key: Optional[str] = None,
logging_obj=None,
optional_params=None,
encoding=None,
):
### BOTO3 INIT ###
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_bedrock_runtime_endpoint = optional_params.pop(
"aws_bedrock_runtime_endpoint", None
)
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
client = init_bedrock_client(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name=aws_session_name,
)
if isinstance(input, str):
## Embedding Call
embeddings = [
_embedding_func_single(
model,
input,
optional_params=optional_params,
client=client,
logging_obj=logging_obj,
)
]
elif isinstance(input, list):
## Embedding Call - assuming this is a List[str]
embeddings = [
_embedding_func_single(
model,
i,
optional_params=optional_params,
client=client,
logging_obj=logging_obj,
)
for i in input
] # [TODO]: make these parallel calls
else:
# enters this branch if input = int, ex. input=2
raise BedrockError(
message="Bedrock Embedding API input must be type str | List[str]",
status_code=400,
)
## Populate OpenAI compliant dictionary
embedding_response = []
for idx, embedding in enumerate(embeddings):
embedding_response.append(
{
"object": "embedding",
"index": idx,
"embedding": embedding,
}
)
model_response.object = "list"
model_response.data = embedding_response
model_response.model = model
input_tokens = 0
input_str = "".join(input)
input_tokens += len(encoding.encode(input_str))
usage = Usage(
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens + 0
)
model_response.usage = usage
return model_response
def image_generation(
model: str,
prompt: str,
timeout=None,
logging_obj=None,
model_response=None,
optional_params=None,
aimg_generation=False,
):
"""
Bedrock Image Gen endpoint support
"""
### BOTO3 INIT ###
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_bedrock_runtime_endpoint = optional_params.pop(
"aws_bedrock_runtime_endpoint", None
)
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
client = init_bedrock_client(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name=aws_session_name,
timeout=timeout,
)
### FORMAT IMAGE GENERATION INPUT ###
modelId = model
provider = model.split(".")[0]
inference_params = copy.deepcopy(optional_params)
inference_params.pop(
"user", None
) # make sure user is not passed in for bedrock call
data = {}
if provider == "stability":
prompt = prompt.replace(os.linesep, " ")
## LOAD CONFIG
config = litellm.AmazonStabilityConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
data = {"text_prompts": [{"text": prompt, "weight": 1}], **inference_params}
else:
raise BedrockError(
status_code=422, message=f"Unsupported model={model}, passed in"
)
body = json.dumps(data).encode("utf-8")
## LOGGING
request_str = f"""
response = client.invoke_model(
body={body}, # type: ignore
modelId={modelId},
accept="application/json",
contentType="application/json",
)""" # type: ignore
logging_obj.pre_call(
input=prompt,
api_key="", # boto3 is used for init.
additional_args={
"complete_input_dict": {"model": modelId, "texts": prompt},
"request_str": request_str,
},
)
try:
response = client.invoke_model(
body=body,
modelId=modelId,
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": data},
original_response=json.dumps(response_body),
)
except Exception as e:
raise BedrockError(
message=f"Embedding Error with model {model}: {e}", status_code=500
)
### FORMAT RESPONSE TO OPENAI FORMAT ###
if response_body is None:
raise Exception("Error in response object format")
if model_response is None:
model_response = ImageResponse()
image_list: List = []
for artifact in response_body["artifacts"]:
image_dict = {"url": artifact["base64"]}
model_response.data = image_dict
return model_response