mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* fix(openai.py): initial commit adding generic event type for openai responses api streaming Ensures handling for undocumented event types - e.g. "response.reasoning_summary_part.added" * fix(transformation.py): handle unknown openai response type * fix(datadog_llm_observability.py): handle dict[str, any] -> dict[str, str] conversion Fixes https://github.com/BerriAI/litellm/issues/9494 * test: add more unit testing * test: add unit test * fix(common_utils.py): fix message with content list * test: update testing
473 lines
15 KiB
Python
473 lines
15 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock, patch
|
|
from typing import Optional
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
|
|
import httpx
|
|
import pytest
|
|
from respx import MockRouter
|
|
|
|
import litellm
|
|
from litellm import Choices, Message, ModelResponse
|
|
from base_llm_unit_tests import BaseLLMChatTest
|
|
import asyncio
|
|
from litellm.types.llms.openai import (
|
|
ChatCompletionAnnotation,
|
|
ChatCompletionAnnotationURLCitation,
|
|
)
|
|
from base_audio_transcription_unit_tests import BaseLLMAudioTranscriptionTest
|
|
|
|
|
|
def test_openai_prediction_param():
|
|
litellm.set_verbose = True
|
|
code = """
|
|
/// <summary>
|
|
/// Represents a user with a first name, last name, and username.
|
|
/// </summary>
|
|
public class User
|
|
{
|
|
/// <summary>
|
|
/// Gets or sets the user's first name.
|
|
/// </summary>
|
|
public string FirstName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's last name.
|
|
/// </summary>
|
|
public string LastName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's username.
|
|
/// </summary>
|
|
public string Username { get; set; }
|
|
}
|
|
"""
|
|
|
|
completion = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
)
|
|
|
|
print(completion)
|
|
|
|
assert (
|
|
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
|
|
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_prediction_param_mock():
|
|
"""
|
|
Tests that prediction parameter is correctly passed to the API
|
|
"""
|
|
litellm.set_verbose = True
|
|
|
|
code = """
|
|
/// <summary>
|
|
/// Represents a user with a first name, last name, and username.
|
|
/// </summary>
|
|
public class User
|
|
{
|
|
/// <summary>
|
|
/// Gets or sets the user's first name.
|
|
/// </summary>
|
|
public string FirstName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's last name.
|
|
/// </summary>
|
|
public string LastName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's username.
|
|
/// </summary>
|
|
public string Username { get; set; }
|
|
}
|
|
"""
|
|
from openai import AsyncOpenAI
|
|
|
|
client = AsyncOpenAI(api_key="fake-api-key")
|
|
|
|
with patch.object(
|
|
client.chat.completions.with_raw_response, "create"
|
|
) as mock_client:
|
|
try:
|
|
await litellm.acompletion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs
|
|
|
|
# Verify the request contains the prediction parameter
|
|
assert "prediction" in request_body
|
|
# verify prediction is correctly sent to the API
|
|
assert request_body["prediction"] == {"type": "content", "content": code}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_prediction_param_with_caching():
|
|
"""
|
|
Tests using `prediction` parameter with caching
|
|
"""
|
|
from litellm.caching.caching import LiteLLMCacheType
|
|
import logging
|
|
from litellm._logging import verbose_logger
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
import time
|
|
|
|
litellm.set_verbose = True
|
|
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
|
|
code = """
|
|
/// <summary>
|
|
/// Represents a user with a first name, last name, and username.
|
|
/// </summary>
|
|
public class User
|
|
{
|
|
/// <summary>
|
|
/// Gets or sets the user's first name.
|
|
/// </summary>
|
|
public string FirstName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's last name.
|
|
/// </summary>
|
|
public string LastName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's username.
|
|
/// </summary>
|
|
public string Username { get; set; }
|
|
}
|
|
"""
|
|
|
|
completion_response_1 = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
)
|
|
|
|
time.sleep(0.5)
|
|
|
|
# cache hit
|
|
completion_response_2 = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
)
|
|
|
|
assert completion_response_1.id == completion_response_2.id
|
|
|
|
completion_response_3 = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{"role": "user", "content": "What is the first name of the user?"},
|
|
],
|
|
prediction={"type": "content", "content": code + "FirstName"},
|
|
)
|
|
|
|
assert completion_response_3.id != completion_response_1.id
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_vision_with_custom_model():
|
|
"""
|
|
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
|
|
|
|
"""
|
|
import base64
|
|
import requests
|
|
from openai import AsyncOpenAI
|
|
|
|
client = AsyncOpenAI(api_key="fake-api-key")
|
|
|
|
litellm.set_verbose = True
|
|
api_base = "https://my-custom.api.openai.com"
|
|
|
|
# Fetch and encode a test image
|
|
url = "https://dummyimage.com/100/100/fff&text=Test+image"
|
|
response = requests.get(url)
|
|
file_data = response.content
|
|
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
|
base64_image = f"data:image/png;base64,{encoded_file}"
|
|
|
|
with patch.object(
|
|
client.chat.completions.with_raw_response, "create"
|
|
) as mock_client:
|
|
try:
|
|
response = await litellm.acompletion(
|
|
model="openai/my-custom-model",
|
|
max_tokens=10,
|
|
api_base=api_base, # use the mock api
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": base64_image},
|
|
},
|
|
],
|
|
}
|
|
],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs
|
|
|
|
print("request_body: ", request_body)
|
|
|
|
assert request_body["messages"] == [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": ""
|
|
},
|
|
},
|
|
],
|
|
},
|
|
]
|
|
assert request_body["model"] == "my-custom-model"
|
|
assert request_body["max_tokens"] == 10
|
|
|
|
|
|
class TestOpenAIChatCompletion(BaseLLMChatTest):
|
|
def get_base_completion_call_args(self) -> dict:
|
|
return {"model": "gpt-4o-mini"}
|
|
|
|
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
|
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
|
pass
|
|
|
|
def test_prompt_caching(self):
|
|
"""
|
|
Test that prompt caching works correctly.
|
|
Skip for now, as it's working locally but not in CI
|
|
"""
|
|
pass
|
|
|
|
def test_multilingual_requests(self):
|
|
"""
|
|
Tests that the provider can handle multilingual requests and invalid utf-8 sequences
|
|
|
|
Context: https://github.com/openai/openai-python/issues/1921
|
|
"""
|
|
base_completion_call_args = self.get_base_completion_call_args()
|
|
try:
|
|
response = self.completion_function(
|
|
**base_completion_call_args,
|
|
messages=[{"role": "user", "content": "你好世界!\ud83e, ö"}],
|
|
)
|
|
assert response is not None
|
|
except litellm.InternalServerError:
|
|
pytest.skip("Skipping test due to InternalServerError")
|
|
|
|
def test_prompt_caching(self):
|
|
"""
|
|
Works locally but CI/CD is failing this test. Temporary skip to push out a new release.
|
|
"""
|
|
pass
|
|
|
|
|
|
def test_completion_bad_org():
|
|
import litellm
|
|
|
|
litellm.set_verbose = True
|
|
_old_org = os.environ.get("OPENAI_ORGANIZATION", None)
|
|
os.environ["OPENAI_ORGANIZATION"] = "bad-org"
|
|
messages = [{"role": "user", "content": "hi"}]
|
|
|
|
with pytest.raises(Exception) as exc_info:
|
|
comp = litellm.completion(
|
|
model="gpt-4o-mini", messages=messages, organization="bad-org"
|
|
)
|
|
|
|
print(exc_info.value)
|
|
assert "header should match organization for API key" in str(exc_info.value)
|
|
|
|
if _old_org is not None:
|
|
os.environ["OPENAI_ORGANIZATION"] = _old_org
|
|
else:
|
|
del os.environ["OPENAI_ORGANIZATION"]
|
|
|
|
|
|
@patch("litellm.main.openai_chat_completions._get_openai_client")
|
|
def test_openai_max_retries_0(mock_get_openai_client):
|
|
import litellm
|
|
|
|
litellm.set_verbose = True
|
|
response = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
max_retries=0,
|
|
)
|
|
|
|
mock_get_openai_client.assert_called_once()
|
|
assert mock_get_openai_client.call_args.kwargs["max_retries"] == 0
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["o1", "o1-preview", "o1-mini", "o3-mini"])
|
|
def test_o1_parallel_tool_calls(model):
|
|
litellm.completion(
|
|
model=model,
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "foo",
|
|
}
|
|
],
|
|
parallel_tool_calls=True,
|
|
drop_params=True,
|
|
)
|
|
|
|
|
|
def test_openai_chat_completion_streaming_handler_reasoning_content():
|
|
from litellm.llms.openai.chat.gpt_transformation import (
|
|
OpenAIChatCompletionStreamingHandler,
|
|
)
|
|
from unittest.mock import MagicMock
|
|
|
|
streaming_handler = OpenAIChatCompletionStreamingHandler(
|
|
streaming_response=MagicMock(),
|
|
sync_stream=True,
|
|
)
|
|
response = streaming_handler.chunk_parser(
|
|
chunk={
|
|
"id": "e89b6501-8ac2-464c-9550-7cd3daf94350",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1741037890,
|
|
"model": "deepseek-reasoner",
|
|
"system_fingerprint": "fp_5417b77867_prod0225",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"content": None, "reasoning_content": "."},
|
|
"logprobs": None,
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
)
|
|
|
|
assert response.choices[0].delta.reasoning_content == "."
|
|
|
|
|
|
def validate_response_url_citation(url_citation: ChatCompletionAnnotationURLCitation):
|
|
assert "end_index" in url_citation
|
|
assert "start_index" in url_citation
|
|
assert "url" in url_citation
|
|
|
|
|
|
def validate_web_search_annotations(annotations: ChatCompletionAnnotation):
|
|
"""validates litellm response contains web search annotations"""
|
|
print("annotations: ", annotations)
|
|
assert annotations is not None
|
|
assert isinstance(annotations, list)
|
|
for annotation in annotations:
|
|
assert annotation["type"] == "url_citation"
|
|
url_citation: ChatCompletionAnnotationURLCitation = annotation["url_citation"]
|
|
validate_response_url_citation(url_citation)
|
|
|
|
|
|
@pytest.mark.flaky(reruns=3)
|
|
def test_openai_web_search():
|
|
"""Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
|
|
litellm._turn_on_debug()
|
|
response = litellm.completion(
|
|
model="openai/gpt-4o-search-preview",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "What was a positive news story from today?",
|
|
}
|
|
],
|
|
)
|
|
print("litellm response: ", response.model_dump_json(indent=4))
|
|
message = response.choices[0].message
|
|
annotations: ChatCompletionAnnotation = message.annotations
|
|
validate_web_search_annotations(annotations)
|
|
|
|
|
|
def test_openai_web_search_streaming():
|
|
"""Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
|
|
# litellm._turn_on_debug()
|
|
test_openai_web_search: Optional[ChatCompletionAnnotation] = None
|
|
response = litellm.completion(
|
|
model="openai/gpt-4o-search-preview",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "What was a positive news story from today?",
|
|
}
|
|
],
|
|
stream=True,
|
|
)
|
|
for chunk in response:
|
|
print("litellm response chunk: ", chunk)
|
|
if (
|
|
hasattr(chunk.choices[0].delta, "annotations")
|
|
and chunk.choices[0].delta.annotations is not None
|
|
):
|
|
test_openai_web_search = chunk.choices[0].delta.annotations
|
|
|
|
# Assert this request has at-least one web search annotation
|
|
assert test_openai_web_search is not None
|
|
validate_web_search_annotations(test_openai_web_search)
|
|
|
|
|
|
class TestOpenAIGPT4OAudioTranscription(BaseLLMAudioTranscriptionTest):
|
|
def get_base_audio_transcription_call_args(self) -> dict:
|
|
return {
|
|
"model": "openai/gpt-4o-transcribe",
|
|
}
|
|
|
|
def get_custom_llm_provider(self) -> litellm.LlmProviders:
|
|
return litellm.LlmProviders.OPENAI
|
|
|