litellm-mirror/tests/local_testing/create_mock_standard_logging_payload.py
Ishaan Jaff 61b636c20d
[Bug Fix]: Errors in LiteLLM When Using Embeddings Model with Usage-Based Routing (#7390)
* use slp for usage based routing v2

* update error msg

* fix usage based routing v2

* test_tpm_rpm_updated

* fix unused imports

* fix unused imports
2024-12-23 17:42:24 -08:00

131 lines
4.1 KiB
Python

import io
import os
import sys
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch
import pytest
import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.datadog import *
from datetime import datetime, timedelta
from litellm.types.utils import (
StandardLoggingPayload,
StandardLoggingModelInformation,
StandardLoggingMetadata,
StandardLoggingHiddenParams,
)
verbose_logger.setLevel(logging.DEBUG)
def create_standard_logging_payload() -> StandardLoggingPayload:
return StandardLoggingPayload(
id="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo", model_map_value=None
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!"}],
response={"choices": [{"message": {"content": "Hi there!"}}]},
error_str=None,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)
def create_standard_logging_payload_with_long_content() -> StandardLoggingPayload:
return StandardLoggingPayload(
id="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo", model_map_value=None
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!" * 80000}],
response={"choices": [{"message": {"content": "Hi there!" * 80000}}]},
error_str="error_str" * 80000,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)