litellm-mirror/litellm/llms/palm.py
Krish Dholakia 1e7e538261
LiteLLM Minor fixes + improvements (08/04/2024) (#5505)
* Minor IAM AWS OIDC Improvements (#5246)

* AWS IAM: Temporary tokens are valid across all regions after being issued, so it is wasteful to request one for each region.

* AWS IAM: Include an inline policy, to help reduce misuse of overly permissive IAM roles.

* (test_bedrock_completion.py): Ensure we are testing cross AWS region OIDC flow.

* fix(router.py): log rejected requests

Fixes https://github.com/BerriAI/litellm/issues/5498

* refactor: don't use verbose_logger.exception, if exception is raised

User might already have handling for this. But alerting systems in prod will raise this as an unhandled error.

* fix(datadog.py): support setting datadog source as an env var

Fixes https://github.com/BerriAI/litellm/issues/5508

* docs(logging.md): add dd_source to datadog docs

* fix(proxy_server.py): expose `/customer/list` endpoint for showing all customers

* (bedrock): Fix usage with Cloudflare AI Gateway, and proxies in general. (#5509)

* feat(anthropic.py): support 'cache_control' param for content when it is a string

* Revert "(bedrock): Fix usage with Cloudflare AI Gateway, and proxies in gener…" (#5519)

This reverts commit 3fac0349c2.

* refactor: ci/cd run again

---------

Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
2024-09-04 22:16:55 -07:00

202 lines
6.7 KiB
Python

import copy
import time
import traceback
import types
from typing import Callable, Optional
import httpx
import litellm
from litellm import verbose_logger
from litellm.utils import Choices, Message, ModelResponse, Usage
class PalmError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST",
url="https://developers.generativeai.google/api/python/google/generativeai/chat",
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class PalmConfig:
"""
Reference: https://developers.generativeai.google/api/python/google/generativeai/chat
The class `PalmConfig` provides configuration for the Palm's API interface. Here are the parameters:
- `context` (string): Text that should be provided to the model first, to ground the response. This could be a prompt to guide the model's responses.
- `examples` (list): Examples of what the model should generate. They are treated identically to conversation messages except that they take precedence over the history in messages if the total input size exceeds the model's input_token_limit.
- `temperature` (float): Controls the randomness of the output. Must be positive. Higher values produce a more random and varied response. A temperature of zero will be deterministic.
- `candidate_count` (int): Maximum number of generated response messages to return. This value must be between [1, 8], inclusive. Only unique candidates are returned.
- `top_k` (int): The API uses combined nucleus and top-k sampling. `top_k` sets the maximum number of tokens to sample from on each step.
- `top_p` (float): The API uses combined nucleus and top-k sampling. `top_p` configures the nucleus sampling. It sets the maximum cumulative probability of tokens to sample from.
- `max_output_tokens` (int): Sets the maximum number of tokens to be returned in the output
"""
context: Optional[str] = None
examples: Optional[list] = None
temperature: Optional[float] = None
candidate_count: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
max_output_tokens: Optional[int] = None
def __init__(
self,
context: Optional[str] = None,
examples: Optional[list] = None,
temperature: Optional[float] = None,
candidate_count: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
max_output_tokens: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
api_key,
encoding,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
try:
import google.generativeai as palm # type: ignore
except:
raise Exception(
"Importing google.generativeai failed, please run 'pip install -q google-generativeai"
)
palm.configure(api_key=api_key)
model = model
## Load Config
inference_params = copy.deepcopy(optional_params)
inference_params.pop(
"stream", None
) # palm does not support streaming, so we handle this by fake streaming in main.py
config = litellm.PalmConfig.get_config()
for k, v in config.items():
if (
k not in inference_params
): # completion(top_k=3) > palm_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": {"inference_params": inference_params}},
)
## COMPLETION CALL
try:
response = palm.generate_text(prompt=prompt, **inference_params)
except Exception as e:
raise PalmError(
message=str(e),
status_code=500,
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": {}},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = response
try:
choices_list = []
for idx, item in enumerate(completion_response.candidates):
if len(item["output"]) > 0:
message_obj = Message(content=item["output"])
else:
message_obj = Message(content=None)
choice_obj = Choices(index=idx + 1, message=message_obj)
choices_list.append(choice_obj)
model_response.choices = choices_list # type: ignore
except Exception as e:
raise PalmError(
message=traceback.format_exc(), status_code=response.status_code
)
try:
completion_response = model_response["choices"][0]["message"].get("content")
except:
raise PalmError(
status_code=400,
message=f"No response received. Original response - {response}",
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response.created = int(time.time())
model_response.model = "palm/" + model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass