mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
106 lines
4 KiB
Python
106 lines
4 KiB
Python
import json
|
|
from typing import TYPE_CHECKING, Any, Union
|
|
|
|
from litellm.types.integrations.opentelemetry import SpanAttributes
|
|
|
|
if TYPE_CHECKING:
|
|
from opentelemetry.trace import Span as _Span
|
|
|
|
Span = Union[_Span, Any]
|
|
else:
|
|
Span = Any
|
|
|
|
|
|
class LangtraceAttributes:
|
|
"""
|
|
This class is used to save trace attributes to Langtrace's spans
|
|
"""
|
|
|
|
def set_langtrace_attributes(self, span: Span, kwargs, response_obj):
|
|
"""
|
|
This function is used to log the event to Langtrace
|
|
"""
|
|
|
|
vendor = kwargs.get("litellm_params").get("custom_llm_provider")
|
|
optional_params = kwargs.get("optional_params", {})
|
|
options = {**kwargs, **optional_params}
|
|
self.set_request_attributes(span, options, vendor)
|
|
self.set_response_attributes(span, response_obj)
|
|
self.set_usage_attributes(span, response_obj)
|
|
|
|
def set_request_attributes(self, span: Span, kwargs, vendor):
|
|
"""
|
|
This function is used to get span attributes for the LLM request
|
|
"""
|
|
span_attributes = {
|
|
"gen_ai.operation.name": "chat",
|
|
"langtrace.service.name": vendor,
|
|
SpanAttributes.LLM_REQUEST_MODEL.value: kwargs.get("model"),
|
|
SpanAttributes.LLM_IS_STREAMING.value: kwargs.get("stream"),
|
|
SpanAttributes.LLM_REQUEST_TEMPERATURE.value: kwargs.get("temperature"),
|
|
SpanAttributes.LLM_TOP_K.value: kwargs.get("top_k"),
|
|
SpanAttributes.LLM_REQUEST_TOP_P.value: kwargs.get("top_p"),
|
|
SpanAttributes.LLM_USER.value: kwargs.get("user"),
|
|
SpanAttributes.LLM_REQUEST_MAX_TOKENS.value: kwargs.get("max_tokens"),
|
|
SpanAttributes.LLM_RESPONSE_STOP_REASON.value: kwargs.get("stop"),
|
|
SpanAttributes.LLM_FREQUENCY_PENALTY.value: kwargs.get("frequency_penalty"),
|
|
SpanAttributes.LLM_PRESENCE_PENALTY.value: kwargs.get("presence_penalty"),
|
|
}
|
|
|
|
prompts = kwargs.get("messages")
|
|
|
|
if prompts:
|
|
span.add_event(
|
|
name="gen_ai.content.prompt",
|
|
attributes={SpanAttributes.LLM_PROMPTS.value: json.dumps(prompts)},
|
|
)
|
|
|
|
self.set_span_attributes(span, span_attributes)
|
|
|
|
def set_response_attributes(self, span: Span, response_obj):
|
|
"""
|
|
This function is used to get span attributes for the LLM response
|
|
"""
|
|
response_attributes = {
|
|
"gen_ai.response_id": response_obj.get("id"),
|
|
"gen_ai.system_fingerprint": response_obj.get("system_fingerprint"),
|
|
SpanAttributes.LLM_RESPONSE_MODEL.value: response_obj.get("model"),
|
|
}
|
|
completions = []
|
|
for choice in response_obj.get("choices", []):
|
|
role = choice.get("message").get("role")
|
|
content = choice.get("message").get("content")
|
|
completions.append({"role": role, "content": content})
|
|
|
|
span.add_event(
|
|
name="gen_ai.content.completion",
|
|
attributes={SpanAttributes.LLM_COMPLETIONS: json.dumps(completions)},
|
|
)
|
|
|
|
self.set_span_attributes(span, response_attributes)
|
|
|
|
def set_usage_attributes(self, span: Span, response_obj):
|
|
"""
|
|
This function is used to get span attributes for the LLM usage
|
|
"""
|
|
usage = response_obj.get("usage")
|
|
if usage:
|
|
usage_attributes = {
|
|
SpanAttributes.LLM_USAGE_PROMPT_TOKENS.value: usage.get(
|
|
"prompt_tokens"
|
|
),
|
|
SpanAttributes.LLM_USAGE_COMPLETION_TOKENS.value: usage.get(
|
|
"completion_tokens"
|
|
),
|
|
SpanAttributes.LLM_USAGE_TOTAL_TOKENS.value: usage.get("total_tokens"),
|
|
}
|
|
self.set_span_attributes(span, usage_attributes)
|
|
|
|
def set_span_attributes(self, span: Span, attributes):
|
|
"""
|
|
This function is used to set span attributes
|
|
"""
|
|
for key, value in attributes.items():
|
|
if not value:
|
|
continue
|
|
span.set_attribute(key, value)
|