litellm-mirror/tests/logging_callback_tests/test_datadog.py
Ishaan Jaff 2d10f48c43
(fixes) datadog logging - handle 1MB max log size on DD (#6996)
* fix dd truncate_standard_logging_payload_content

* dd truncate_standard_logging_payload_content

* fix test_datadog_payload_content_truncation

* add clear msg on _truncate_text

* test_truncate_standard_logging_payload

* fix linting error

* fix linting errors
2024-12-02 23:01:42 -08:00

444 lines
15 KiB
Python

import io
import os
import sys
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch
import pytest
import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.datadog import *
from datetime import datetime, timedelta
from litellm.types.utils import (
StandardLoggingPayload,
StandardLoggingModelInformation,
StandardLoggingMetadata,
StandardLoggingHiddenParams,
)
verbose_logger.setLevel(logging.DEBUG)
def create_standard_logging_payload() -> StandardLoggingPayload:
return StandardLoggingPayload(
id="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo", model_map_value=None
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!"}],
response={"choices": [{"message": {"content": "Hi there!"}}]},
error_str=None,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)
@pytest.mark.asyncio
async def test_create_datadog_logging_payload():
"""Test creating a DataDog logging payload from a standard logging object"""
dd_logger = DataDogLogger()
standard_payload = create_standard_logging_payload()
# Create mock kwargs with the standard logging object
kwargs = {"standard_logging_object": standard_payload}
# Test payload creation
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
# Verify payload structure
assert dd_payload["ddsource"] == os.getenv("DD_SOURCE", "litellm")
assert dd_payload["service"] == "litellm-server"
assert dd_payload["status"] == DataDogStatus.INFO
# verify the message field == standard_payload
dict_payload = json.loads(dd_payload["message"])
assert dict_payload == standard_payload
@pytest.mark.asyncio
async def test_datadog_failure_logging():
"""Test logging a failure event to DataDog"""
dd_logger = DataDogLogger()
standard_payload = create_standard_logging_payload()
standard_payload["status"] = "failure" # Set status to failure
standard_payload["error_str"] = "Test error"
kwargs = {"standard_logging_object": standard_payload}
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
assert (
dd_payload["status"] == DataDogStatus.ERROR
) # Verify failure maps to warning status
# verify the message field == standard_payload
dict_payload = json.loads(dd_payload["message"])
assert dict_payload == standard_payload
# verify error_str is in the message field
assert "error_str" in dict_payload
assert dict_payload["error_str"] == "Test error"
@pytest.mark.asyncio
async def test_datadog_logging_http_request():
"""
- Test that the HTTP request is made to Datadog
- sent to the /api/v2/logs endpoint
- the payload is batched
- each element in the payload is a DatadogPayload
- each element in a DatadogPayload.message contains all the valid fields
"""
try:
from litellm.integrations.datadog.datadog import DataDogLogger
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(5):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# Print the request body
# You can add more specific assertions here if needed
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
assert len(body) == 5 # 5 logs should be sent to DataDog
# Assert that the first element in body has the expected fields and shape
assert isinstance(body[0], dict), "First element in body should be a dictionary"
# Get the expected fields and their types from DatadogPayload
expected_fields = DatadogPayload.__annotations__
# Assert that all elements in body have the fields of DatadogPayload with correct types
for log in body:
assert isinstance(log, dict), "Each log should be a dictionary"
for field, expected_type in expected_fields.items():
assert field in log, f"Field '{field}' is missing from the log"
assert isinstance(
log[field], expected_type
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
# Additional assertion to ensure no extra fields are present
for log in body:
assert set(log.keys()) == set(
expected_fields.keys()
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
# Parse the 'message' field as JSON and check its structure
message = json.loads(body[0]["message"])
expected_message_fields = StandardLoggingPayload.__annotations__.keys()
for field in expected_message_fields:
assert field in message, f"Field '{field}' is missing from the message"
# Check specific fields
assert message["call_type"] == "acompletion"
assert message["model"] == "gpt-3.5-turbo"
assert isinstance(message["model_parameters"], dict)
assert "temperature" in message["model_parameters"]
assert "max_tokens" in message["model_parameters"]
assert isinstance(message["response"], dict)
assert isinstance(message["metadata"], dict)
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
async def test_datadog_log_redis_failures():
"""
Test that poorly configured Redis is logged as Warning on DataDog
"""
try:
from litellm.caching.caching import Cache
from litellm.integrations.datadog.datadog import DataDogLogger
litellm.cache = Cache(
type="redis", host="badhost", port="6379", password="badpassword"
)
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.service_callback = ["datadog"]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(3):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
failure_events = [log for log in body if log["status"] == "warning"]
assert len(failure_events) > 0, "No failure events logged"
print("ALL FAILURE/WARN EVENTS", failure_events)
for event in failure_events:
message = json.loads(event["message"])
assert (
event["status"] == "warning"
), f"Event status is not 'warning': {event['status']}"
assert (
message["service"] == "redis"
), f"Service is not 'redis': {message['service']}"
assert "error" in message, "No 'error' field in the message"
assert message["error"], "Error field is empty"
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
async def test_datadog_logging():
try:
litellm.success_callback = ["datadog"]
litellm.set_verbose = True
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
)
print(response)
await asyncio.sleep(5)
except Exception as e:
print(e)
@pytest.mark.asyncio
async def test_datadog_payload_environment_variables():
"""Test that DataDog payload correctly includes environment variables in the payload structure"""
try:
# Set test environment variables
test_env = {
"DD_ENV": "test-env",
"DD_SERVICE": "test-service",
"DD_VERSION": "1.0.0",
"DD_SOURCE": "test-source",
"DD_API_KEY": "fake-key",
"DD_SITE": "datadoghq.com",
}
with patch.dict(os.environ, test_env):
dd_logger = DataDogLogger()
standard_payload = create_standard_logging_payload()
# Create the payload
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs={"standard_logging_object": standard_payload},
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
print("dd payload=", json.dumps(dd_payload, indent=2))
# Verify payload structure and environment variables
assert (
dd_payload["ddsource"] == "test-source"
), "Incorrect source in payload"
assert (
dd_payload["service"] == "test-service"
), "Incorrect service in payload"
assert (
dd_payload["ddtags"]
== "env:test-env,service:test-service,version:1.0.0"
), "Incorrect tags in payload"
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
async def test_datadog_payload_content_truncation():
"""
Test that DataDog payload correctly truncates long content
DataDog has a limit of 1MB for the logged payload size.
"""
dd_logger = DataDogLogger()
# Create a standard payload with very long content
standard_payload = create_standard_logging_payload()
long_content = "x" * 80_000 # Create string longer than MAX_STR_LENGTH (10_000)
# Modify payload with long content
standard_payload["error_str"] = long_content
standard_payload["messages"] = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": long_content,
"detail": "low",
},
}
],
}
]
standard_payload["response"] = {"choices": [{"message": {"content": long_content}}]}
# Create the payload
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs={"standard_logging_object": standard_payload},
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
print("dd_payload", json.dumps(dd_payload, indent=2))
# Parse the message back to dict to verify truncation
message_dict = json.loads(dd_payload["message"])
# Verify truncation of fields
assert len(message_dict["error_str"]) < 10_100, "error_str not truncated correctly"
assert (
len(str(message_dict["messages"])) < 10_100
), "messages not truncated correctly"
assert (
len(str(message_dict["response"])) < 10_100
), "response not truncated correctly"