litellm-mirror/litellm/llms/azure/fine_tuning/handler.py
Ishaan Jaff 2ece919f01
(Feat) - new endpoint GET /v1/fine_tuning/jobs/{fine_tuning_job_id:path} (#7427)
* init commit ft jobs logging

* add ft logging

* add logging for FineTuningJob

* simple FT Job create test

* simplify Azure fine tuning to use all methods in OAI ft

* update doc string

* add aretrieve_fine_tuning_job

* re use from litellm.proxy.utils import handle_exception_on_proxy

* fix naming

* add /fine_tuning/jobs/{fine_tuning_job_id:path}

* remove unused imports

* update func signature

* run ci/cd again

* ci/cd run again

* fix code qulity

* ci/cd run again
2024-12-27 17:01:14 -08:00

48 lines
1.4 KiB
Python

from typing import Optional, Union
import httpx
from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI
from litellm.llms.azure.files.handler import get_azure_openai_client
from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI
class AzureOpenAIFineTuningAPI(OpenAIFineTuningAPI):
"""
AzureOpenAI methods to support fine tuning, inherits from OpenAIFineTuningAPI.
"""
def get_openai_client(
self,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str],
client: Optional[
Union[OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI]
] = None,
_is_async: bool = False,
api_version: Optional[str] = None,
) -> Optional[
Union[
OpenAI,
AsyncOpenAI,
AzureOpenAI,
AsyncAzureOpenAI,
]
]:
# Override to use Azure-specific client initialization
if isinstance(client, OpenAI) or isinstance(client, AsyncOpenAI):
client = None
return get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
api_version=api_version,
client=client,
_is_async=_is_async,
)