mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
* feat(lowest_tpm_rpm_v2.py): fix redis cache check to use >= instead of > makes it consistent * test(test_custom_guardrails.py): add more unit testing on default on guardrails ensure it runs if user sent guardrail list is empty * docs(quick_start.md): clarify default on guardrails run even if user guardrails list contains other guardrails * refactor(litellm_logging.py): refactor no-log to helper util allows for more consistent behavior * feat(litellm_logging.py): add event hook to verbose logs * fix(litellm_logging.py): add unit testing to ensure `litellm.disable_no_log_param` is respected * docs(logging.md): document how to disable 'no-log' param * test: fix test to handle feb * test: cleanup old bedrock model * fix: fix router check |
||
---|---|---|
.. | ||
audio_utils | ||
llm_cost_calc | ||
llm_response_utils | ||
prompt_templates | ||
specialty_caches | ||
tokenizers | ||
asyncify.py | ||
core_helpers.py | ||
default_encoding.py | ||
dot_notation_indexing.py | ||
duration_parser.py | ||
exception_mapping_utils.py | ||
fallback_utils.py | ||
get_litellm_params.py | ||
get_llm_provider_logic.py | ||
get_supported_openai_params.py | ||
health_check_utils.py | ||
initialize_dynamic_callback_params.py | ||
json_validation_rule.py | ||
litellm_logging.py | ||
llm_request_utils.py | ||
logging_callback_manager.py | ||
logging_utils.py | ||
mock_functions.py | ||
README.md | ||
realtime_streaming.py | ||
redact_messages.py | ||
response_header_helpers.py | ||
rules.py | ||
streaming_chunk_builder_utils.py | ||
streaming_handler.py | ||
token_counter.py |
Folder Contents
This folder contains general-purpose utilities that are used in multiple places in the codebase.
Core files:
streaming_handler.py
: The core streaming logic + streaming related helper utilscore_helpers.py
: code used intypes/
- e.g.map_finish_reason
.exception_mapping_utils.py
: utils for mapping exceptions to openai-compatible error types.default_encoding.py
: code for loading the default encoding (tiktoken)get_llm_provider_logic.py
: code for inferring the LLM provider from a given model name.duration_parser.py
: code for parsing durations - e.g. "1d", "1mo", "10s"