litellm-mirror/litellm/tests/test_exceptions.py
2023-08-07 11:32:01 -07:00

145 lines
5.8 KiB
Python

# from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, OpenAIError
import os
import sys
import traceback
sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion, AuthenticationError, InvalidRequestError, RateLimitError, ServiceUnavailableError, OpenAIError
from concurrent.futures import ThreadPoolExecutor
import pytest
litellm.failure_callback = ["sentry"]
# litellm.set_verbose = True
#### What this tests ####
# This tests exception mapping -> trigger an exception from an llm provider -> assert if output is of the expected type
# 5 providers -> OpenAI, Azure, Anthropic, Cohere, Replicate
# 3 main types of exceptions -> - Rate Limit Errors, Context Window Errors, Auth errors (incorrect/rotated key, etc.)
# Approach: Run each model through the test -> assert if the correct error (always the same one) is triggered
# models = ["gpt-3.5-turbo", "chatgpt-test", "claude-instant-1", "command-nightly"]
models = ["command-nightly"]
def logging_fn(model_call_dict):
if "model" in model_call_dict:
print(f"model_call_dict: {model_call_dict['model']}")
else:
print(f"model_call_dict: {model_call_dict}")
# Test 1: Context Window Errors
@pytest.mark.parametrize("model", models)
def test_context_window(model):
sample_text = "how does a court case get to the Supreme Court?" * 5000
messages = [{"content": sample_text, "role": "user"}]
try:
azure = model == "chatgpt-test"
print(f"model: {model}")
response = completion(model=model, messages=messages, azure=azure, logger_fn=logging_fn)
print(f"response: {response}")
except InvalidRequestError:
print("InvalidRequestError")
return
except OpenAIError:
print("OpenAIError")
return
except Exception as e:
print("Uncaught Error in test_context_window")
print(f"Error Type: {type(e).__name__}")
print(f"Uncaught Exception - {e}")
pytest.fail(f"Error occurred: {e}")
return
test_context_window("command-nightly")
# Test 2: InvalidAuth Errors
@pytest.mark.parametrize("model", models)
def invalid_auth(model): # set the model key to an invalid key, depending on the model
messages = [{ "content": "Hello, how are you?","role": "user"}]
temporary_key = None
try:
azure = False
if model == "gpt-3.5-turbo":
temporary_key = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_KEY"] = "bad-key"
elif model == "chatgpt-test":
temporary_key = os.environ["AZURE_API_KEY"]
os.environ["AZURE_API_KEY"] = "bad-key"
azure = True
elif model == "claude-instant-1":
temporary_key = os.environ["ANTHROPIC_API_KEY"]
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
elif model == "command-nightly":
temporary_key = os.environ["COHERE_API_KEY"]
os.environ["COHERE_API_KEY"] = "bad-key"
elif model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1":
temporary_key = os.environ["REPLICATE_API_KEY"]
os.environ["REPLICATE_API_KEY"] = "bad-key"
print(f"model: {model}")
response = completion(model=model, messages=messages, azure=azure)
print(f"response: {response}")
except AuthenticationError as e:
print(f"AuthenticationError Caught Exception - {e}")
except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
print(f"OpenAIError Caught Exception - {e}")
except Exception as e:
print(type(e))
print(e.__class__.__name__)
print(f"Uncaught Exception - {e}")
pytest.fail(f"Error occurred: {e}")
if temporary_key != None: # reset the key
if model == "gpt-3.5-turbo":
os.environ["OPENAI_API_KEY"] = temporary_key
elif model == "chatgpt-test":
os.environ["AZURE_API_KEY"] = temporary_key
azure = True
elif model == "claude-instant-1":
os.environ["ANTHROPIC_API_KEY"] = temporary_key
elif model == "command-nightly":
os.environ["COHERE_API_KEY"] = temporary_key
elif model == "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1":
os.environ["REPLICATE_API_KEY"] = temporary_key
return
invalid_auth("command-nightly")
# # Test 3: Rate Limit Errors
# def test_model(model):
# try:
# sample_text = "how does a court case get to the Supreme Court?" * 50000
# messages = [{ "content": sample_text,"role": "user"}]
# azure = False
# if model == "chatgpt-test":
# azure = True
# print(f"model: {model}")
# response = completion(model=model, messages=messages, azure=azure)
# except RateLimitError:
# return True
# except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
# return True
# except Exception as e:
# print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
# pass
# return False
# # Repeat each model 500 times
# extended_models = [model for model in models for _ in range(250)]
# def worker(model):
# return test_model(model)
# # Create a dictionary to store the results
# counts = {True: 0, False: 0}
# # Use Thread Pool Executor
# with ThreadPoolExecutor(max_workers=500) as executor:
# # Use map to start the operation in thread pool
# results = executor.map(worker, extended_models)
# # Iterate over results and count True/False
# for result in results:
# counts[result] += 1
# accuracy_score = counts[True]/(counts[True] + counts[False])
# print(f"accuracy_score: {accuracy_score}")