mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
301 lines
8.5 KiB
Python
301 lines
8.5 KiB
Python
#### What this tests ####
|
|
#This tests litellm router
|
|
|
|
import sys, os, time
|
|
import traceback, asyncio
|
|
import pytest
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
from litellm import Router
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from collections import defaultdict
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
|
|
def test_exception_raising():
|
|
# this tests if the router raises an exception when invalid params are set
|
|
# in this test both deployments have bad keys - Keep this test. It validates if the router raises the most recent exception
|
|
litellm.set_verbose=True
|
|
import openai
|
|
try:
|
|
print("testing if router raises an exception")
|
|
old_api_key = os.environ["AZURE_API_KEY"]
|
|
os.environ["AZURE_API_KEY"] = ""
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": "bad-key",
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE")
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { #
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": "bad-key",
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800
|
|
}
|
|
]
|
|
router = Router(model_list=model_list,
|
|
redis_host=os.getenv("REDIS_HOST"),
|
|
redis_password=os.getenv("REDIS_PASSWORD"),
|
|
redis_port=int(os.getenv("REDIS_PORT")),
|
|
routing_strategy="simple-shuffle",
|
|
set_verbose=False,
|
|
num_retries=1) # type: ignore
|
|
response = router.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "hello this request will fail"
|
|
}
|
|
]
|
|
)
|
|
os.environ["AZURE_API_KEY"] = old_api_key
|
|
pytest.fail(f"Should have raised an Auth Error")
|
|
except openai.AuthenticationError:
|
|
print("Test Passed: Caught an OPENAI AUTH Error, Good job. This is what we needed!")
|
|
os.environ["AZURE_API_KEY"] = old_api_key
|
|
router.reset()
|
|
except Exception as e:
|
|
os.environ["AZURE_API_KEY"] = old_api_key
|
|
print("Got unexpected exception on router!", e)
|
|
# test_exception_raising()
|
|
|
|
|
|
def test_reading_key_from_model_list():
|
|
# this tests if the router raises an exception when invalid params are set
|
|
# DO NOT REMOVE THIS TEST. It's an IMP ONE. Speak to Ishaan, if you are tring to remove this
|
|
litellm.set_verbose=False
|
|
import openai
|
|
try:
|
|
print("testing if router raises an exception")
|
|
old_api_key = os.environ["AZURE_API_KEY"]
|
|
os.environ.pop("AZURE_API_KEY", None)
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": old_api_key,
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE")
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800
|
|
}
|
|
]
|
|
|
|
router = Router(model_list=model_list,
|
|
redis_host=os.getenv("REDIS_HOST"),
|
|
redis_password=os.getenv("REDIS_PASSWORD"),
|
|
redis_port=int(os.getenv("REDIS_PORT")),
|
|
routing_strategy="simple-shuffle",
|
|
set_verbose=True,
|
|
num_retries=1) # type: ignore
|
|
response = router.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "hello this request will fail"
|
|
}
|
|
]
|
|
)
|
|
os.environ["AZURE_API_KEY"] = old_api_key
|
|
router.reset()
|
|
except Exception as e:
|
|
os.environ["AZURE_API_KEY"] = old_api_key
|
|
print(f"FAILED TEST")
|
|
pytest.fail(f"Got unexpected exception on router! - {e}")
|
|
# test_reading_key_from_model_list()
|
|
|
|
|
|
### FUNCTION CALLING
|
|
|
|
def test_function_calling():
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo-0613",
|
|
"litellm_params": {
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 100000,
|
|
"rpm": 10000,
|
|
},
|
|
]
|
|
|
|
messages = [
|
|
{"role": "user", "content": "What is the weather like in Boston?"}
|
|
]
|
|
functions = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA"
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"]
|
|
}
|
|
},
|
|
"required": ["location"]
|
|
}
|
|
}
|
|
]
|
|
|
|
router = Router(model_list=model_list, routing_strategy="latency-based-routing")
|
|
response = router.completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
|
|
router.reset()
|
|
print(response)
|
|
|
|
def test_acompletion_on_router():
|
|
try:
|
|
litellm.set_verbose = False
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 100000,
|
|
"rpm": 10000,
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_base": os.getenv("AZURE_API_BASE"),
|
|
"api_version": os.getenv("AZURE_API_VERSION")
|
|
},
|
|
"tpm": 100000,
|
|
"rpm": 10000,
|
|
}
|
|
]
|
|
|
|
messages = [
|
|
{"role": "user", "content": f"write a one sentence poem {time.time()}?"}
|
|
]
|
|
start_time = time.time()
|
|
router = Router(model_list=model_list,
|
|
redis_host=os.environ["REDIS_HOST"],
|
|
redis_password=os.environ["REDIS_PASSWORD"],
|
|
redis_port=os.environ["REDIS_PORT"],
|
|
cache_responses=True,
|
|
timeout=30,
|
|
routing_strategy="simple-shuffle")
|
|
async def get_response():
|
|
response1 = await router.acompletion(model="gpt-3.5-turbo", messages=messages)
|
|
print(f"response1: {response1}")
|
|
response2 = await router.acompletion(model="gpt-3.5-turbo", messages=messages)
|
|
print(f"response2: {response2}")
|
|
assert response1.id == response2.id
|
|
assert len(response1.choices[0].message.content) > 0
|
|
assert response1.choices[0].message.content == response2.choices[0].message.content
|
|
asyncio.run(get_response())
|
|
router.reset()
|
|
except litellm.Timeout as e:
|
|
end_time = time.time()
|
|
print(f"timeout error occurred: {end_time - start_time}")
|
|
pass
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_acompletion_on_router()
|
|
|
|
def test_function_calling_on_router():
|
|
try:
|
|
litellm.set_verbose = True
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
},
|
|
]
|
|
function1 = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
redis_host=os.getenv("REDIS_HOST"),
|
|
redis_password=os.getenv("REDIS_PASSWORD"),
|
|
redis_port=os.getenv("REDIS_PORT")
|
|
)
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "what's the weather in boston"
|
|
}
|
|
]
|
|
response = router.completion(model="gpt-3.5-turbo", messages=messages, functions=function1)
|
|
print(f"final returned response: {response}")
|
|
router.reset()
|
|
assert isinstance(response["choices"][0]["message"]["function_call"], dict)
|
|
except Exception as e:
|
|
print(f"An exception occurred: {e}")
|
|
|
|
# test_function_calling_on_router()
|
|
|
|
def test_aembedding_on_router():
|
|
litellm.set_verbose = True
|
|
try:
|
|
model_list = [
|
|
{
|
|
"model_name": "text-embedding-ada-002",
|
|
"litellm_params": {
|
|
"model": "text-embedding-ada-002",
|
|
},
|
|
"tpm": 100000,
|
|
"rpm": 10000,
|
|
},
|
|
]
|
|
|
|
async def embedding_call():
|
|
router = Router(model_list=model_list)
|
|
response = await router.aembedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(response)
|
|
router.reset()
|
|
asyncio.run(embedding_call())
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
pytest.fail(f"Error occurred: {e}")
|
|
# test_aembedding_on_router()
|