mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
143 lines
5.4 KiB
Python
143 lines
5.4 KiB
Python
import os, json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable
|
|
from litellm.utils import ModelResponse
|
|
|
|
|
|
class BasetenError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class BasetenLLM:
|
|
def __init__(self, encoding, logging_obj, api_key=None):
|
|
self.encoding = encoding
|
|
self.completion_url_fragment_1 = "https://app.baseten.co/models/"
|
|
self.completion_url_fragment_2 = "/predict"
|
|
self.api_key = api_key
|
|
self.logging_obj = logging_obj
|
|
self.validate_environment(api_key=api_key)
|
|
|
|
def validate_environment(
|
|
self, api_key
|
|
): # set up the environment required to run the model
|
|
# set the api key
|
|
if self.api_key == None:
|
|
raise ValueError(
|
|
"Missing Baseten API Key - A call is being made to baseten but no key is set either in the environment variables or via params"
|
|
)
|
|
self.api_key = api_key
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": "Api-Key " + self.api_key,
|
|
}
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
): # logic for parsing in - calling - parsing out model completion calls
|
|
model = model
|
|
prompt = ""
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
data = {
|
|
"prompt": prompt,
|
|
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
self.logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=self.api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
self.completion_url_fragment_1 + model + self.completion_url_fragment_2,
|
|
headers=self.headers,
|
|
data=json.dumps(data),
|
|
)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
self.logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=self.api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
if "error" in completion_response:
|
|
raise BasetenError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
if "model_output" in completion_response:
|
|
if (
|
|
isinstance(completion_response["model_output"], dict)
|
|
and "data" in completion_response["model_output"]
|
|
and isinstance(
|
|
completion_response["model_output"]["data"], list
|
|
)
|
|
):
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = completion_response["model_output"]["data"][0]
|
|
elif isinstance(completion_response["model_output"], str):
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = completion_response["model_output"]
|
|
elif "completion" in completion_response and isinstance(
|
|
completion_response["completion"], str
|
|
):
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = completion_response["completion"]
|
|
else:
|
|
raise ValueError(
|
|
f"Unable to parse response. Original response: {response.text}"
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(self.encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
|
)
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
return model_response
|
|
|
|
def embedding(
|
|
self,
|
|
): # logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|