mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
* feat(bedrock/rerank): infer model region if model given as arn * test: add unit testing to ensure bedrock region name inferred from arn on rerank * feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137 * test(test_bedrock_completion.py): add testing for bedrock cohere rerank * feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking * build(model_prices_and_context_window.json): add amazon.rerank model to model cost map * fix(cost_calculator.py): bedrock/common_utils.py get base model from model w/ arn -> handles rerank model * build(model_prices_and_context_window.json): add bedrock cohere rerank pricing * feat(bedrock/rerank): migrate bedrock config to basererank config * Revert "feat(bedrock/rerank): migrate bedrock config to basererank config" This reverts commit84fae1f167
. * test: add testing to ensure large doc / queries are correctly counted * Revert "test: add testing to ensure large doc / queries are correctly counted" This reverts commit4337f1657e
. * fix(migrate-jina-ai-to-rerank-config): enables cost tracking * refactor(jina_ai/): finish migrating jina ai to base rerank config enables cost tracking * fix(jina_ai/rerank): e2e jina ai rerank cost tracking * fix: cleanup dead code * fix: fix python3.8 compatibility error * test: fix test * test: add e2e testing for azure ai rerank * fix: fix linting error * test: mark cohere as flaky
127 lines
3.6 KiB
Python
127 lines
3.6 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import httpx
|
|
|
|
from litellm.types.rerank import OptionalRerankParams, RerankBilledUnits, RerankResponse
|
|
from litellm.types.utils import ModelInfo
|
|
|
|
from ..chat.transformation import BaseLLMException
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
|
|
|
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
|
else:
|
|
LiteLLMLoggingObj = Any
|
|
|
|
|
|
class BaseRerankConfig(ABC):
|
|
@abstractmethod
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
api_key: Optional[str] = None,
|
|
) -> dict:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def transform_rerank_request(
|
|
self,
|
|
model: str,
|
|
optional_rerank_params: OptionalRerankParams,
|
|
headers: dict,
|
|
) -> dict:
|
|
return {}
|
|
|
|
@abstractmethod
|
|
def transform_rerank_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: RerankResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
api_key: Optional[str] = None,
|
|
request_data: dict = {},
|
|
optional_params: dict = {},
|
|
litellm_params: dict = {},
|
|
) -> RerankResponse:
|
|
return model_response
|
|
|
|
@abstractmethod
|
|
def get_complete_url(self, api_base: Optional[str], model: str) -> str:
|
|
"""
|
|
OPTIONAL
|
|
|
|
Get the complete url for the request
|
|
|
|
Some providers need `model` in `api_base`
|
|
"""
|
|
return api_base or ""
|
|
|
|
@abstractmethod
|
|
def get_supported_cohere_rerank_params(self, model: str) -> list:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def map_cohere_rerank_params(
|
|
self,
|
|
non_default_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
query: str,
|
|
documents: List[Union[str, Dict[str, Any]]],
|
|
custom_llm_provider: Optional[str] = None,
|
|
top_n: Optional[int] = None,
|
|
rank_fields: Optional[List[str]] = None,
|
|
return_documents: Optional[bool] = True,
|
|
max_chunks_per_doc: Optional[int] = None,
|
|
) -> OptionalRerankParams:
|
|
pass
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
|
) -> BaseLLMException:
|
|
raise BaseLLMException(
|
|
status_code=status_code,
|
|
message=error_message,
|
|
headers=headers,
|
|
)
|
|
|
|
def calculate_rerank_cost(
|
|
self,
|
|
model: str,
|
|
custom_llm_provider: Optional[str] = None,
|
|
billed_units: Optional[RerankBilledUnits] = None,
|
|
model_info: Optional[ModelInfo] = None,
|
|
) -> Tuple[float, float]:
|
|
"""
|
|
Calculates the cost per query for a given rerank model.
|
|
|
|
Input:
|
|
- model: str, the model name without provider prefix
|
|
- custom_llm_provider: str, the provider used for the model. If provided, used to check if the litellm model info is for that provider.
|
|
- num_queries: int, the number of queries to calculate the cost for
|
|
- model_info: ModelInfo, the model info for the given model
|
|
|
|
Returns:
|
|
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
|
|
"""
|
|
|
|
if (
|
|
model_info is None
|
|
or "input_cost_per_query" not in model_info
|
|
or model_info["input_cost_per_query"] is None
|
|
or billed_units is None
|
|
):
|
|
return 0.0, 0.0
|
|
|
|
search_units = billed_units.get("search_units")
|
|
|
|
if search_units is None:
|
|
return 0.0, 0.0
|
|
|
|
prompt_cost = model_info["input_cost_per_query"] * search_units
|
|
|
|
return prompt_cost, 0.0
|