litellm-mirror/litellm/proxy/tests/test_gemini_context_caching.py
2024-08-08 16:06:23 -07:00

54 lines
1.5 KiB
Python

import datetime
import httpx
import openai
# Set Litellm proxy variables here
LITELLM_BASE_URL = "http://0.0.0.0:4000"
LITELLM_PROXY_API_KEY = "sk-1234"
client = openai.OpenAI(api_key=LITELLM_PROXY_API_KEY, base_url=LITELLM_BASE_URL)
httpx_client = httpx.Client(timeout=30)
################################
# First create a cachedContents object
print("creating cached content")
create_cache = httpx_client.post(
url=f"{LITELLM_BASE_URL}/vertex-ai/cachedContents",
headers={"Authorization": f"Bearer {LITELLM_PROXY_API_KEY}"},
json={
"model": "gemini-1.5-pro-001",
"contents": [
{
"role": "user",
"parts": [
{
"text": "This is sample text to demonstrate explicit caching."
* 4000
}
],
}
],
},
)
print("response from create_cache", create_cache)
create_cache_response = create_cache.json()
print("json from create_cache", create_cache_response)
cached_content_name = create_cache_response["name"]
#################################
# Use the `cachedContents` object in your /chat/completions
response = client.chat.completions.create( # type: ignore
model="gemini-1.5-pro-001",
max_tokens=8192,
messages=[
{
"role": "user",
"content": "what is the sample text about?",
},
],
temperature="0.7",
extra_body={"cached_content": cached_content_name}, # 👈 key change
)
print("response from proxy", response)