mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* intg v1 clarifai-litellm * Added more community models and testcase * Clarifai-updated markdown docs
216 lines
No EOL
8 KiB
Python
216 lines
No EOL
8 KiB
Python
import os, types, traceback
|
|
import json
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional
|
|
from litellm.utils import ModelResponse, Usage, Choices, Message
|
|
import litellm
|
|
import httpx
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
|
|
|
|
class ClarifaiError(Exception):
|
|
def __init__(self, status_code, message, url):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url=url
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
)
|
|
|
|
class ClarifaiConfig:
|
|
"""
|
|
Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat
|
|
TODO fill in the details
|
|
"""
|
|
max_tokens: Optional[int] = None
|
|
temperature: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def validate_environment(api_key):
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
return headers
|
|
|
|
def completions_to_model(payload):
|
|
# if payload["n"] != 1:
|
|
# raise HTTPException(
|
|
# status_code=422,
|
|
# detail="Only one generation is supported. Please set candidate_count to 1.",
|
|
# )
|
|
|
|
params = {}
|
|
if temperature := payload.get("temperature"):
|
|
params["temperature"] = temperature
|
|
if max_tokens := payload.get("max_tokens"):
|
|
params["max_tokens"] = max_tokens
|
|
return {
|
|
"inputs": [{"data": {"text": {"raw": payload["prompt"]}}}],
|
|
"model": {"output_info": {"params": params}},
|
|
}
|
|
|
|
def convert_model_to_url(model: str, api_base: str):
|
|
user_id, app_id, model_id = model.split(".")
|
|
return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs"
|
|
|
|
def get_prompt_model_name(url: str):
|
|
clarifai_model_name = url.split("/")[-2]
|
|
if "claude" in clarifai_model_name:
|
|
return "anthropic", clarifai_model_name.replace("_", ".")
|
|
if ("llama" in clarifai_model_name)or ("mistral" in clarifai_model_name):
|
|
return "", "meta-llama/llama-2-chat"
|
|
else:
|
|
return "", clarifai_model_name
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
model = convert_model_to_url(model, api_base)
|
|
prompt = " ".join(message["content"] for message in messages) # TODO
|
|
|
|
## Load Config
|
|
config = litellm.ClarifaiConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
):
|
|
optional_params[k] = v
|
|
|
|
custom_llm_provider, orig_model_name = get_prompt_model_name(model)
|
|
if custom_llm_provider == "anthropic":
|
|
prompt = prompt_factory(
|
|
model=orig_model_name,
|
|
messages=messages,
|
|
api_key=api_key,
|
|
custom_llm_provider="clarifai"
|
|
)
|
|
else:
|
|
prompt = prompt_factory(
|
|
model=orig_model_name,
|
|
messages=messages,
|
|
api_key=api_key,
|
|
custom_llm_provider=custom_llm_provider
|
|
)
|
|
# print(prompt); exit(0)
|
|
|
|
data = {
|
|
"prompt": prompt,
|
|
**optional_params,
|
|
}
|
|
data = completions_to_model(data)
|
|
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
model,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
)
|
|
# print(response.content); exit()
|
|
"""
|
|
{"status":{"code":10000,"description":"Ok","req_id":"d914cf7e097487997910650cde954a37"},"outputs":[{"id":"c2baa668174b4547bd4d2e9f8996198d","status":{"code":10000,"description":"Ok"},"created_at":"2024-02-07T10:57:52.917990493Z","model":{"id":"GPT-4","name":"GPT-4","created_at":"2023-06-08T17:40:07.964967Z","modified_at":"2023-12-04T11:39:54.587604Z","app_id":"chat-completion","model_version":{"id":"5d7a50b44aec4a01a9c492c5a5fcf387","created_at":"2023-11-09T19:57:56.961259Z","status":{"code":21100,"description":"Model is trained and ready"},"completed_at":"2023-11-09T20:00:48.933172Z","visibility":{"gettable":50},"app_id":"chat-completion","user_id":"openai","metadata":{}},"user_id":"openai","model_type_id":"text-to-text","visibility":{"gettable":50},"toolkits":[],"use_cases":[],"languages":[],"languages_full":[],"check_consents":[],"workflow_recommended":false,"image":{"url":"https://data.clarifai.com/small/users/openai/apps/chat-completion/inputs/image/34326a9914d361bb93ae8e5381689755","hosted":{"prefix":"https://data.clarifai.com","suffix":"users/openai/apps/chat-completion/inputs/image/34326a9914d361bb93ae8e5381689755","sizes":["small"],"crossorigin":"use-credentials"}}},"input":{"id":"fba1f22a332743f083ddae0a7eb443ae","data":{"text":{"raw":"what\'s the weather in SF","url":"https://samples.clarifai.com/placeholder.gif"}}},"data":{"text":{"raw":"As an AI, I\'m unable to provide real-time information or updates. Please check a reliable weather website or app for the current weather in San Francisco.","text_info":{"encoding":"UnknownTextEnc"}}}}]}
|
|
"""
|
|
if response.status_code != 200:
|
|
raise ClarifaiError(status_code=response.status_code, message=response.text, url=model)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
# print(completion_response)
|
|
try:
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response["outputs"]):
|
|
if len(item["data"]["text"]["raw"]) > 0:
|
|
message_obj = Message(content=item["data"]["text"]["raw"])
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason="stop",
|
|
index=idx + 1, #check
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response["choices"] = choices_list
|
|
except Exception as e:
|
|
raise ClarifaiError(
|
|
message=traceback.format_exc(), status_code=response.status_code, url=model
|
|
)
|
|
|
|
# Calculate Usage
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
|
)
|
|
model_response["model"] = model
|
|
model_response["usage"] = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
return model_response |