litellm-mirror/litellm/proxy/proxy_server.py
2023-10-11 14:35:05 -07:00

412 lines
No EOL
16 KiB
Python

import sys, os, platform
import threading
import shutil, random, traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
try:
import uvicorn
import fastapi
import tomli as tomllib
import appdirs
except ImportError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi", "tomli", "appdirs"])
import uvicorn
import fastapi
import tomli as tomllib
import appdirs
import random
list_of_messages = [
"'The thing I wish you improved is...'",
"'A feature I really want is...'",
"'The worst thing about this product is...'",
"'This product would be better if...'",
"'I don't like how this works...'",
"'It would help me if you could add...'",
"'This feature doesn't meet my needs because...'",
"'I get frustrated when the product...'",
]
def generate_feedback_box():
box_width = 60
# Select a random message
message = random.choice(list_of_messages)
print()
print('\033[1;37m' + '#' + '-'*box_width + '#\033[0m')
print('\033[1;37m' + '#' + ' '*box_width + '#\033[0m')
print('\033[1;37m' + '# {:^59} #\033[0m'.format(message))
print('\033[1;37m' + '# {:^59} #\033[0m'.format('https://github.com/BerriAI/litellm/issues/new'))
print('\033[1;37m' + '#' + ' '*box_width + '#\033[0m')
print('\033[1;37m' + '#' + '-'*box_width + '#\033[0m')
print()
print(' Thank you for using LiteLLM! - Krrish & Ishaan')
print()
print()
generate_feedback_box()
print()
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
print()
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
print()
import litellm
from fastapi import FastAPI, Request
from fastapi.routing import APIRouter
from fastapi.responses import StreamingResponse, FileResponse
import json
import logging
app = FastAPI()
router = APIRouter()
user_api_base = None
user_model = None
user_debug = False
user_max_tokens = None
user_temperature = None
user_telemetry = False
user_config = None
config_filename = "litellm.secrets.toml"
pkg_config_filename = "template.secrets.toml"
# Using appdirs to determine user-specific config path
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
#### HELPER FUNCTIONS ####
def print_verbose(print_statement):
global user_debug
if user_debug:
print(print_statement)
def usage_telemetry(): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
if user_telemetry:
data = {
"feature": "local_proxy_server"
}
threading.Thread(target=litellm.utils.litellm_telemetry, args=(data,)).start()
def load_config():
try:
global user_config, user_api_base, user_max_tokens, user_temperature, user_model
if not os.path.exists(user_config_path):
# If user's config doesn't exist, copy the default config from the package
here = os.path.abspath(os.path.dirname(__file__))
parent_dir = os.path.dirname(here)
default_config_path = os.path.join(parent_dir, pkg_config_filename)
# Ensure the user-specific directory exists
os.makedirs(config_dir, exist_ok=True)
# Copying the file using shutil.copy
shutil.copy(default_config_path, user_config_path)
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
with open(user_config_path, "rb") as f:
user_config = tomllib.load(f)
## load keys
if "keys" in user_config:
for key in user_config["keys"]:
if key == "HUGGINGFACE_API_KEY":
litellm.huggingface_key = user_config["keys"][key]
elif key == "OPENAI_API_KEY":
litellm.openai_key = user_config["keys"][key]
elif key == "TOGETHERAI_API_KEY":
litellm.togetherai_api_key = user_config["keys"][key]
elif key == "NLP_CLOUD_API_KEY":
litellm.nlp_cloud_key = user_config["keys"][key]
elif key == "ANTHROPIC_API_KEY":
litellm.anthropic_key = user_config["keys"][key]
elif key == "REPLICATE_API_KEY":
litellm.replicate_key = user_config["keys"][key]
## settings
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt", True) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get("drop_params", True) # by default drop params if unsupported by provider
## load model config - to set this run `litellm --config`
model_config = None
if user_model == "local":
model_config = user_config["local_model"]
elif user_model == "hosted":
model_config = user_config["hosted_model"]
litellm.max_budget = model_config.get("max_budget", None) # check if user set a budget for hosted model - e.g. gpt-4
print_verbose(f"user_config: {user_config}")
print_verbose(f"model_config: {model_config}")
if model_config is None:
return
user_model = model_config["model_name"] # raise an error if this isn't set when user runs either `litellm --model local_model` or `litellm --model hosted_model`
print_verbose(f"user_model: {user_model}")
user_max_tokens = model_config.get("max_tokens", None)
user_temperature = model_config.get("temperature", None)
user_api_base = model_config.get("api_base", None)
## custom prompt template
if "prompt_template" in model_config:
model_prompt_template = model_config["prompt_template"]
if len(model_prompt_template.keys()) > 0: # if user has initialized this at all
litellm.register_prompt_template(
model=user_model,
initial_prompt_value=model_prompt_template.get("MODEL_PRE_PROMPT", ""),
roles={
"system": {
"pre_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
},
"user": {
"pre_message": model_prompt_template.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_USER_MESSAGE_END_TOKEN", ""),
},
"assistant": {
"pre_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
"post_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""),
}
},
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
)
except Exception as e:
traceback.print_exc()
def initialize(model, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params, add_function_to_prompt):
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry
user_model = model
user_debug = debug
load_config()
user_api_base = api_base
user_max_tokens = max_tokens
user_temperature = temperature
user_telemetry = telemetry
usage_telemetry()
if drop_params == True:
litellm.drop_params = True
if add_function_to_prompt == True:
litellm.add_function_to_prompt = True
if max_budget:
litellm.max_budget = max_budget
def deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy):
import requests
# Load .env file
# Prepare data for posting
data = {
"model": model,
"api_base": api_base,
"temperature": temperature,
"max_tokens": max_tokens,
}
# print(data)
# Make post request to the url
url = "https://litellm-api.onrender.com/deploy"
# url = "http://0.0.0.0:4000/deploy"
with open(".env", "w") as env_file:
for row in data:
env_file.write(f"{row.upper()}='{data[row]}'\n")
env_file.write("\n\n")
for key in os.environ:
value = os.environ[key]
env_file.write(f"{key}='{value}'\n")
# env_file.write(str(os.environ))
files = {"file": open(".env", "rb")}
# print(files)
response = requests.post(url, data=data, files=files)
# print(response)
# Check the status of the request
if response.status_code != 200:
return f"Request to url: {url} failed with status: {response.status_code}"
# Reading the response
response_data = response.json()
# print(response_data)
url = response_data["url"]
# # Do something with response_data
return url
# for streaming
def data_generator(response):
print("inside generator")
for chunk in response:
print(f"chunk: {chunk}")
print_verbose(f"returned chunk: {chunk}")
yield f"data: {json.dumps(chunk)}\n\n"
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
# init logging config
logging.basicConfig(
filename='cost.log',
level=logging.INFO,
format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# check if it has collected an entire stream response
if "complete_streaming_response" in kwargs:
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
completion_response=kwargs["complete_streaming_response"]
input_text = kwargs["messages"]
output_text = completion_response["choices"][0]["message"]["content"]
response_cost = litellm.completion_cost(
model = kwargs["model"],
messages = input_text,
completion=output_text
)
print("streaming response_cost", response_cost)
logging.info(f"Model {kwargs['model']} Cost: ${response_cost:.8f}")
# for non streaming responses
else:
# we pass the completion_response obj
if kwargs["stream"] != True:
response_cost = litellm.completion_cost(completion_response=completion_response)
print("regular response_cost", response_cost)
logging.info(f"Model {completion_response.model} Cost: ${response_cost:.8f}")
except:
pass
litellm.success_callback = [track_cost_callback]
def litellm_completion(data, type):
try:
if user_model:
data["model"] = user_model
# override with user settings
if user_temperature:
data["temperature"] = user_temperature
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
## CUSTOM PROMPT TEMPLATE ## - run `litellm --config` to set this
litellm.register_prompt_template(
model=user_model,
roles={
"system": {
"pre_message": os.getenv("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
},
"assistant": {
"pre_message": os.getenv("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv("MODEL_ASSISTANT_MESSAGE_END_TOKEN", "")
},
"user": {
"pre_message": os.getenv("MODEL_USER_MESSAGE_START_TOKEN", ""),
"post_message": os.getenv("MODEL_USER_MESSAGE_END_TOKEN", "")
}
},
initial_prompt_value=os.getenv("MODEL_PRE_PROMPT", ""),
final_prompt_value=os.getenv("MODEL_POST_PROMPT", "")
)
if type == "completion":
response = litellm.text_completion(**data)
elif type == "chat_completion":
response = litellm.completion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
print_verbose(f"response: {response}")
return response
except Exception as e:
if "Invalid response object from API" in str(e):
completion_call_details = {}
if user_model:
completion_call_details["model"] = user_model
else:
completion_call_details["model"] = data['model']
if user_api_base:
completion_call_details["api_base"] = user_api_base
else:
completion_call_details["api_base"] = None
print(f"\033[1;31mLiteLLM.Exception: Invalid API Call. Call details: Model: \033[1;37m{completion_call_details['model']}\033[1;31m; LLM Provider: \033[1;37m{e.llm_provider}\033[1;31m; Custom API Base - \033[1;37m{completion_call_details['api_base']}\033[1;31m\033[0m")
if completion_call_details["api_base"] == "http://localhost:11434":
print()
print("Trying to call ollama? Try `litellm --model ollama/llama2 --api_base http://localhost:11434`")
print()
else:
print(f"\033[1;31mLiteLLM.Exception: {str(e)}\033[0m")
return {"message": "An error occurred"}, 500
#### API ENDPOINTS ####
@router.get("/models") # if project requires model list
def model_list():
if user_model != None:
return dict(
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
object="list",
)
else:
all_models = litellm.model_list
return dict(
data = [{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in all_models],
object="list",
)
@router.post("/completions")
async def completion(request: Request):
data = await request.json()
return litellm_completion(data=data, type="completion")
@router.post("/chat/completions")
async def chat_completion(request: Request):
data = await request.json()
print_verbose(f"data passed in: {data}")
response = litellm_completion(data, type="chat_completion")
return response
# V1 Endpoints - some apps expect a v1 endpoint - these call the regular function
@router.post("/v1/completions")
async def completion(request: Request):
data = await request.json()
return litellm_completion(data=data, type="completion")
@router.post("/v1/chat/completions")
async def chat_completion(request: Request):
data = await request.json()
print_verbose(f"data passed in: {data}")
response = litellm_completion(data, type="chat_completion")
return response
def print_cost_logs():
with open('cost.log', 'r') as f:
# print this in green
print("\033[1;32m")
print(f.read())
print("\033[0m")
return
@router.get("/ollama_logs")
async def retrieve_server_log(request: Request):
filepath = os.path.expanduser('~/.ollama/logs/server.log')
return FileResponse(filepath)
@router.get("/")
async def home(request: Request):
return "LiteLLM: RUNNING"
app.include_router(router)