litellm-mirror/litellm/llms/base.py
Krish Dholakia 3671829e39
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 12s
Complete 'requests' library removal (#7350)
* refactor: initial commit moving watsonx_text to base_llm_http_handler + clarifying new provider directory structure

* refactor(watsonx/completion/handler.py): move to using base llm http handler

removes 'requests' library usage

* fix(watsonx_text/transformation.py): fix result transformation

migrates to transformation.py, for usage with base llm http handler

* fix(streaming_handler.py): migrate watsonx streaming to transformation.py

ensures streaming works with base llm http handler

* fix(streaming_handler.py): fix streaming linting errors and remove watsonx conditional logic

* fix(watsonx/): fix chat route post completion route refactor

* refactor(watsonx/embed): refactor watsonx to use base llm http handler for embedding calls as well

* refactor(base.py): remove requests library usage from litellm

* build(pyproject.toml): remove requests library usage

* fix: fix linting errors

* fix: fix linting errors

* fix(types/utils.py): fix validation errors for modelresponsestream

* fix(replicate/handler.py): fix linting errors

* fix(litellm_logging.py): handle modelresponsestream object

* fix(streaming_handler.py): fix modelresponsestream args

* fix: remove unused imports

* test: fix test

* fix: fix test

* test: fix test

* test: fix tests

* test: fix test

* test: fix patch target

* test: fix test
2024-12-22 07:21:25 -08:00

90 lines
2.6 KiB
Python

## This is a template base class to be used for adding new LLM providers via API calls
from typing import Any, Optional, Union
import httpx
import litellm
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.types.utils import ModelResponse, TextCompletionResponse
class BaseLLM:
_client_session: Optional[httpx.Client] = None
def process_response(
self,
model: str,
response: httpx.Response,
model_response: ModelResponse,
stream: bool,
logging_obj: Any,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: list,
print_verbose,
encoding,
) -> Union[ModelResponse, CustomStreamWrapper]:
"""
Helper function to process the response across sync + async completion calls
"""
return model_response
def process_text_completion_response(
self,
model: str,
response: httpx.Response,
model_response: TextCompletionResponse,
stream: bool,
logging_obj: Any,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: list,
print_verbose,
encoding,
) -> Union[TextCompletionResponse, CustomStreamWrapper]:
"""
Helper function to process the response across sync + async completion calls
"""
return model_response
def create_client_session(self):
if litellm.client_session:
_client_session = litellm.client_session
else:
_client_session = httpx.Client()
return _client_session
def create_aclient_session(self):
if litellm.aclient_session:
_aclient_session = litellm.aclient_session
else:
_aclient_session = httpx.AsyncClient()
return _aclient_session
def __exit__(self):
if hasattr(self, "_client_session") and self._client_session is not None:
self._client_session.close()
async def __aexit__(self, exc_type, exc_val, exc_tb):
if hasattr(self, "_aclient_session"):
await self._aclient_session.aclose() # type: ignore
def validate_environment(
self, *args, **kwargs
) -> Optional[Any]: # set up the environment required to run the model
return None
def completion(
self, *args, **kwargs
) -> Any: # logic for parsing in - calling - parsing out model completion calls
return None
def embedding(
self, *args, **kwargs
) -> Any: # logic for parsing in - calling - parsing out model embedding calls
return None