litellm-mirror/tests/llm_translation/base_rerank_unit_tests.py
Krish Dholakia b682dc4ec8
Add cost tracking for rerank via bedrock (#8691)
* feat(bedrock/rerank): infer model region if model given as arn

* test: add unit testing to ensure bedrock region name inferred from arn on rerank

* feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result

Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137

* test(test_bedrock_completion.py): add testing for bedrock cohere rerank

* feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking

* build(model_prices_and_context_window.json): add amazon.rerank model to model cost map

* fix(cost_calculator.py): bedrock/common_utils.py

get base model from model w/ arn -> handles rerank model

* build(model_prices_and_context_window.json): add bedrock cohere rerank pricing

* feat(bedrock/rerank): migrate bedrock config to basererank config

* Revert "feat(bedrock/rerank): migrate bedrock config to basererank config"

This reverts commit 84fae1f167.

* test: add testing to ensure large doc / queries are correctly counted

* Revert "test: add testing to ensure large doc / queries are correctly counted"

This reverts commit 4337f1657e.

* fix(migrate-jina-ai-to-rerank-config): enables cost tracking

* refactor(jina_ai/): finish migrating jina ai to base rerank config

enables cost tracking

* fix(jina_ai/rerank): e2e jina ai rerank cost tracking

* fix: cleanup dead code

* fix: fix python3.8 compatibility error

* test: fix test

* test: add e2e testing for azure ai rerank

* fix: fix linting error

* test: mark cohere as flaky
2025-02-20 21:00:18 -08:00

128 lines
4.1 KiB
Python

import asyncio
import httpx
import json
import pytest
import sys
from typing import Any, Dict, List
from unittest.mock import MagicMock, Mock, patch
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm.exceptions import BadRequestError
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import (
CustomStreamWrapper,
get_supported_openai_params,
get_optional_params,
)
# test_example.py
from abc import ABC, abstractmethod
def assert_response_shape(response, custom_llm_provider):
expected_response_shape = {"id": str, "results": list, "meta": dict}
expected_results_shape = {"index": int, "relevance_score": float}
expected_meta_shape = {"api_version": dict, "billed_units": dict}
expected_api_version_shape = {"version": str}
expected_billed_units_shape = {"search_units": int}
expected_billed_units_total_tokens_shape = {"total_tokens": int}
assert isinstance(response.id, expected_response_shape["id"])
assert isinstance(response.results, expected_response_shape["results"])
for result in response.results:
assert isinstance(result["index"], expected_results_shape["index"])
assert isinstance(
result["relevance_score"], expected_results_shape["relevance_score"]
)
assert isinstance(response.meta, expected_response_shape["meta"])
if custom_llm_provider == "cohere":
assert isinstance(
response.meta["api_version"], expected_meta_shape["api_version"]
)
assert isinstance(
response.meta["api_version"]["version"],
expected_api_version_shape["version"],
)
assert isinstance(
response.meta["billed_units"], expected_meta_shape["billed_units"]
)
if "total_tokens" in response.meta["billed_units"]:
assert isinstance(
response.meta["billed_units"]["total_tokens"],
expected_billed_units_total_tokens_shape["total_tokens"],
)
else:
assert isinstance(
response.meta["billed_units"]["search_units"],
expected_billed_units_shape["search_units"],
)
class BaseLLMRerankTest(ABC):
"""
Abstract base test class that enforces a common test across all test classes.
"""
@abstractmethod
def get_base_rerank_call_args(self) -> dict:
"""Must return the base rerank call args"""
pass
@abstractmethod
def get_custom_llm_provider(self) -> litellm.LlmProviders:
"""Must return the custom llm provider"""
pass
@pytest.mark.asyncio()
@pytest.mark.parametrize("sync_mode", [True, False])
async def test_basic_rerank(self, sync_mode):
litellm._turn_on_debug()
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
rerank_call_args = self.get_base_rerank_call_args()
custom_llm_provider = self.get_custom_llm_provider()
if sync_mode is True:
response = litellm.rerank(
**rerank_call_args,
query="hello",
documents=["hello", "world"],
top_n=2,
)
print("re rank response: ", response)
assert response.id is not None
assert response.results is not None
assert response._hidden_params["response_cost"] is not None
assert response._hidden_params["response_cost"] > 0
assert_response_shape(
response=response, custom_llm_provider=custom_llm_provider.value
)
else:
response = await litellm.arerank(
**rerank_call_args,
query="hello",
documents=["hello", "world"],
top_n=2,
)
print("async re rank response: ", response)
assert response.id is not None
assert response.results is not None
assert_response_shape(
response=response, custom_llm_provider=custom_llm_provider.value
)