mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model * fix(base_llm_unit_tests.py): handle azure o1 preview response format tests skip as o1 on azure doesn't support tool calling yet * fix: initial commit of azure o1 handler using openai caller simplifies calling + allows fake streaming logic alr. implemented for openai to just work * feat(azure/o1_handler.py): fake o1 streaming for azure o1 models azure does not currently support streaming for o1 * feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info enables user to toggle on when azure allows o1 streaming without needing to bump versions * style(router.py): remove 'give feedback/get help' messaging when router is used Prevents noisy messaging Closes https://github.com/BerriAI/litellm/issues/5942 * test: fix azure o1 test * test: fix tests * fix: fix test
288 lines
10 KiB
Python
288 lines
10 KiB
Python
from typing import Any, Coroutine, Optional, Union, cast
|
|
|
|
import httpx
|
|
from openai import AsyncAzureOpenAI, AzureOpenAI
|
|
from openai.types.file_deleted import FileDeleted
|
|
|
|
from litellm._logging import verbose_logger
|
|
from litellm.llms.base import BaseLLM
|
|
from litellm.types.llms.openai import *
|
|
|
|
from ..common_utils import get_azure_openai_client
|
|
|
|
|
|
class AzureOpenAIFilesAPI(BaseLLM):
|
|
"""
|
|
AzureOpenAI methods to support for batches
|
|
- create_file()
|
|
- retrieve_file()
|
|
- list_files()
|
|
- delete_file()
|
|
- file_content()
|
|
- update_file()
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
async def acreate_file(
|
|
self,
|
|
create_file_data: CreateFileRequest,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileObject:
|
|
verbose_logger.debug("create_file_data=%s", create_file_data)
|
|
response = await openai_client.files.create(**create_file_data)
|
|
verbose_logger.debug("create_file_response=%s", response)
|
|
return response
|
|
|
|
def create_file(
|
|
self,
|
|
_is_async: bool,
|
|
create_file_data: CreateFileRequest,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
) -> Union[FileObject, Coroutine[Any, Any, FileObject]]:
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.acreate_file( # type: ignore
|
|
create_file_data=create_file_data, openai_client=openai_client
|
|
)
|
|
response = openai_client.files.create(**create_file_data)
|
|
return response
|
|
|
|
async def afile_content(
|
|
self,
|
|
file_content_request: FileContentRequest,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> HttpxBinaryResponseContent:
|
|
response = await openai_client.files.content(**file_content_request)
|
|
return HttpxBinaryResponseContent(response=response.response)
|
|
|
|
def file_content(
|
|
self,
|
|
_is_async: bool,
|
|
file_content_request: FileContentRequest,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
) -> Union[
|
|
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
|
|
]:
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
api_version=api_version,
|
|
max_retries=max_retries,
|
|
organization=None,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.afile_content( # type: ignore
|
|
file_content_request=file_content_request,
|
|
openai_client=openai_client,
|
|
)
|
|
response = cast(AzureOpenAI, openai_client).files.content(
|
|
**file_content_request
|
|
)
|
|
|
|
return HttpxBinaryResponseContent(response=response.response)
|
|
|
|
async def aretrieve_file(
|
|
self,
|
|
file_id: str,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileObject:
|
|
response = await openai_client.files.retrieve(file_id=file_id)
|
|
return response
|
|
|
|
def retrieve_file(
|
|
self,
|
|
_is_async: bool,
|
|
file_id: str,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=None,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.aretrieve_file( # type: ignore
|
|
file_id=file_id,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.retrieve(file_id=file_id)
|
|
|
|
return response
|
|
|
|
async def adelete_file(
|
|
self,
|
|
file_id: str,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileDeleted:
|
|
response = await openai_client.files.delete(file_id=file_id)
|
|
|
|
if not isinstance(response, FileDeleted): # azure returns an empty string
|
|
return FileDeleted(id=file_id, deleted=True, object="file")
|
|
return response
|
|
|
|
def delete_file(
|
|
self,
|
|
_is_async: bool,
|
|
file_id: str,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.adelete_file( # type: ignore
|
|
file_id=file_id,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.delete(file_id=file_id)
|
|
|
|
if not isinstance(response, FileDeleted): # azure returns an empty string
|
|
return FileDeleted(id=file_id, deleted=True, object="file")
|
|
|
|
return response
|
|
|
|
async def alist_files(
|
|
self,
|
|
openai_client: AsyncAzureOpenAI,
|
|
purpose: Optional[str] = None,
|
|
):
|
|
if isinstance(purpose, str):
|
|
response = await openai_client.files.list(purpose=purpose)
|
|
else:
|
|
response = await openai_client.files.list()
|
|
return response
|
|
|
|
def list_files(
|
|
self,
|
|
_is_async: bool,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
purpose: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=None, # openai param
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.alist_files( # type: ignore
|
|
purpose=purpose,
|
|
openai_client=openai_client,
|
|
)
|
|
|
|
if isinstance(purpose, str):
|
|
response = openai_client.files.list(purpose=purpose)
|
|
else:
|
|
response = openai_client.files.list()
|
|
|
|
return response
|