mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
248 lines
7.9 KiB
Python
248 lines
7.9 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
import uuid
|
|
import pytest
|
|
from dotenv import load_dotenv
|
|
from fastapi import Request
|
|
from fastapi.routing import APIRoute
|
|
|
|
load_dotenv()
|
|
import io
|
|
import os
|
|
import time
|
|
import json
|
|
|
|
# this file is to test litellm/proxy
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
import asyncio
|
|
from typing import Optional
|
|
from litellm.types.utils import StandardLoggingPayload, Usage, ModelInfoBase
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
|
|
class TestCustomLogger(CustomLogger):
|
|
def __init__(self):
|
|
self.recorded_usage: Optional[Usage] = None
|
|
self.standard_logging_payload: Optional[StandardLoggingPayload] = None
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
standard_logging_payload = kwargs.get("standard_logging_object")
|
|
self.standard_logging_payload = standard_logging_payload
|
|
print(
|
|
"standard_logging_payload",
|
|
json.dumps(standard_logging_payload, indent=4, default=str),
|
|
)
|
|
|
|
self.recorded_usage = Usage(
|
|
prompt_tokens=standard_logging_payload.get("prompt_tokens"),
|
|
completion_tokens=standard_logging_payload.get("completion_tokens"),
|
|
total_tokens=standard_logging_payload.get("total_tokens"),
|
|
)
|
|
pass
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_stream_token_counting_gpt_4o():
|
|
"""
|
|
When stream_options={"include_usage": True} logging callback tracks Usage == Usage from llm API
|
|
"""
|
|
custom_logger = TestCustomLogger()
|
|
litellm.logging_callback_manager.add_litellm_callback(custom_logger)
|
|
|
|
response = await litellm.acompletion(
|
|
model="gpt-4o",
|
|
messages=[{"role": "user", "content": "Hello, how are you?" * 100}],
|
|
stream=True,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
|
|
actual_usage = None
|
|
async for chunk in response:
|
|
if "usage" in chunk:
|
|
actual_usage = chunk["usage"]
|
|
print("chunk.usage", json.dumps(chunk["usage"], indent=4, default=str))
|
|
pass
|
|
|
|
await asyncio.sleep(2)
|
|
|
|
print("\n\n\n\n\n")
|
|
print(
|
|
"recorded_usage",
|
|
json.dumps(custom_logger.recorded_usage, indent=4, default=str),
|
|
)
|
|
print("\n\n\n\n\n")
|
|
|
|
assert actual_usage.prompt_tokens == custom_logger.recorded_usage.prompt_tokens
|
|
assert (
|
|
actual_usage.completion_tokens == custom_logger.recorded_usage.completion_tokens
|
|
)
|
|
assert actual_usage.total_tokens == custom_logger.recorded_usage.total_tokens
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_stream_token_counting_without_include_usage():
|
|
"""
|
|
When stream_options={"include_usage": True} is not passed, the usage tracked == usage from llm api chunk
|
|
|
|
by default, litellm passes `include_usage=True` for OpenAI API
|
|
"""
|
|
custom_logger = TestCustomLogger()
|
|
litellm.logging_callback_manager.add_litellm_callback(custom_logger)
|
|
|
|
response = await litellm.acompletion(
|
|
model="gpt-4o",
|
|
messages=[{"role": "user", "content": "Hello, how are you?" * 100}],
|
|
stream=True,
|
|
)
|
|
|
|
actual_usage = None
|
|
async for chunk in response:
|
|
if "usage" in chunk:
|
|
actual_usage = chunk["usage"]
|
|
print("chunk.usage", json.dumps(chunk["usage"], indent=4, default=str))
|
|
pass
|
|
|
|
await asyncio.sleep(2)
|
|
|
|
print("\n\n\n\n\n")
|
|
print(
|
|
"recorded_usage",
|
|
json.dumps(custom_logger.recorded_usage, indent=4, default=str),
|
|
)
|
|
print("\n\n\n\n\n")
|
|
|
|
assert actual_usage.prompt_tokens == custom_logger.recorded_usage.prompt_tokens
|
|
assert (
|
|
actual_usage.completion_tokens == custom_logger.recorded_usage.completion_tokens
|
|
)
|
|
assert actual_usage.total_tokens == custom_logger.recorded_usage.total_tokens
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_stream_token_counting_with_redaction():
|
|
"""
|
|
When litellm.turn_off_message_logging=True is used, the usage tracked == usage from llm api chunk
|
|
"""
|
|
litellm.turn_off_message_logging = True
|
|
custom_logger = TestCustomLogger()
|
|
litellm.logging_callback_manager.add_litellm_callback(custom_logger)
|
|
|
|
response = await litellm.acompletion(
|
|
model="gpt-4o",
|
|
messages=[{"role": "user", "content": "Hello, how are you?" * 100}],
|
|
stream=True,
|
|
)
|
|
|
|
actual_usage = None
|
|
async for chunk in response:
|
|
if "usage" in chunk:
|
|
actual_usage = chunk["usage"]
|
|
print("chunk.usage", json.dumps(chunk["usage"], indent=4, default=str))
|
|
pass
|
|
|
|
await asyncio.sleep(2)
|
|
|
|
print("\n\n\n\n\n")
|
|
print(
|
|
"recorded_usage",
|
|
json.dumps(custom_logger.recorded_usage, indent=4, default=str),
|
|
)
|
|
print("\n\n\n\n\n")
|
|
|
|
assert actual_usage.prompt_tokens == custom_logger.recorded_usage.prompt_tokens
|
|
assert (
|
|
actual_usage.completion_tokens == custom_logger.recorded_usage.completion_tokens
|
|
)
|
|
assert actual_usage.total_tokens == custom_logger.recorded_usage.total_tokens
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_stream_token_counting_anthropic_with_include_usage():
|
|
""" """
|
|
from anthropic import Anthropic
|
|
|
|
anthropic_client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
|
litellm._turn_on_debug()
|
|
|
|
custom_logger = TestCustomLogger()
|
|
litellm.logging_callback_manager.add_litellm_callback(custom_logger)
|
|
|
|
input_text = "Respond in just 1 word. Say ping"
|
|
|
|
response = await litellm.acompletion(
|
|
model="claude-3-5-sonnet-20240620",
|
|
messages=[{"role": "user", "content": input_text}],
|
|
max_tokens=4096,
|
|
stream=True,
|
|
)
|
|
|
|
actual_usage = None
|
|
output_text = ""
|
|
async for chunk in response:
|
|
output_text += chunk["choices"][0]["delta"]["content"] or ""
|
|
pass
|
|
|
|
await asyncio.sleep(1)
|
|
|
|
print("\n\n\n\n\n")
|
|
print(
|
|
"recorded_usage",
|
|
json.dumps(custom_logger.recorded_usage, indent=4, default=str),
|
|
)
|
|
print("\n\n\n\n\n")
|
|
|
|
# print making the same request with anthropic client
|
|
anthropic_response = anthropic_client.messages.create(
|
|
model="claude-3-5-sonnet-20240620",
|
|
max_tokens=4096,
|
|
messages=[{"role": "user", "content": input_text}],
|
|
stream=True,
|
|
)
|
|
usage = None
|
|
all_anthropic_usage_chunks = []
|
|
for chunk in anthropic_response:
|
|
print("chunk", json.dumps(chunk, indent=4, default=str))
|
|
if hasattr(chunk, "message"):
|
|
if chunk.message.usage:
|
|
print(
|
|
"USAGE BLOCK",
|
|
json.dumps(chunk.message.usage, indent=4, default=str),
|
|
)
|
|
all_anthropic_usage_chunks.append(chunk.message.usage)
|
|
elif hasattr(chunk, "usage"):
|
|
print("USAGE BLOCK", json.dumps(chunk.usage, indent=4, default=str))
|
|
all_anthropic_usage_chunks.append(chunk.usage)
|
|
|
|
print(
|
|
"all_anthropic_usage_chunks",
|
|
json.dumps(all_anthropic_usage_chunks, indent=4, default=str),
|
|
)
|
|
|
|
input_tokens_anthropic_api = sum(
|
|
[getattr(usage, "input_tokens", 0) for usage in all_anthropic_usage_chunks]
|
|
)
|
|
output_tokens_anthropic_api = sum(
|
|
[getattr(usage, "output_tokens", 0) for usage in all_anthropic_usage_chunks]
|
|
)
|
|
print("input_tokens_anthropic_api", input_tokens_anthropic_api)
|
|
print("output_tokens_anthropic_api", output_tokens_anthropic_api)
|
|
|
|
print("input_tokens_litellm", custom_logger.recorded_usage.prompt_tokens)
|
|
print("output_tokens_litellm", custom_logger.recorded_usage.completion_tokens)
|
|
|
|
## Assert Accuracy of token counting
|
|
# input tokens should be exactly the same
|
|
assert input_tokens_anthropic_api == custom_logger.recorded_usage.prompt_tokens
|
|
|
|
# output tokens can have at max abs diff of 10. We can't guarantee the response from two api calls will be exactly the same
|
|
assert (
|
|
abs(
|
|
output_tokens_anthropic_api - custom_logger.recorded_usage.completion_tokens
|
|
)
|
|
<= 10
|
|
)
|