mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* build: merge branch * test: fix openai naming * fix(main.py): fix openai renaming * style: ignore function length for config factory * fix(sagemaker/): fix routing logic * fix: fix imports * fix: fix override
265 lines
8.1 KiB
Python
265 lines
8.1 KiB
Python
import json
|
|
import types
|
|
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.llms.base_llm.base_model_iterator import FakeStreamResponseIterator
|
|
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
|
|
from litellm.llms.prompt_templates.common_utils import convert_content_list_to_str
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.utils import (
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionUsageBlock,
|
|
Choices,
|
|
GenericStreamingChunk,
|
|
Message,
|
|
ModelResponse,
|
|
Usage,
|
|
)
|
|
from litellm.utils import token_counter
|
|
|
|
from ..common_utils import ClarifaiError
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
|
|
LoggingClass = LiteLLMLoggingObj
|
|
else:
|
|
LoggingClass = Any
|
|
|
|
|
|
class ClarifaiConfig(BaseConfig):
|
|
"""
|
|
Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat
|
|
"""
|
|
|
|
max_tokens: Optional[int] = None
|
|
temperature: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_supported_openai_params(self, model: str) -> list:
|
|
return [
|
|
"temperature",
|
|
"max_tokens",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
elif param == "max_tokens":
|
|
optional_params["max_tokens"] = value
|
|
|
|
return optional_params
|
|
|
|
def _completions_to_model(self, prompt: str, optional_params: dict) -> dict:
|
|
params = {}
|
|
if temperature := optional_params.get("temperature"):
|
|
params["temperature"] = temperature
|
|
if max_tokens := optional_params.get("max_tokens"):
|
|
params["max_tokens"] = max_tokens
|
|
return {
|
|
"inputs": [{"data": {"text": {"raw": prompt}}}],
|
|
"model": {"output_info": {"params": params}},
|
|
}
|
|
|
|
def _convert_model_to_url(self, model: str, api_base: str):
|
|
user_id, app_id, model_id = model.split(".")
|
|
return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs"
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
prompt = " ".join(convert_content_list_to_str(message) for message in messages)
|
|
|
|
## Load Config
|
|
config = self.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params:
|
|
optional_params[k] = v
|
|
|
|
data = self._completions_to_model(
|
|
prompt=prompt, optional_params=optional_params
|
|
)
|
|
|
|
return data
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
api_key: Optional[str] = None,
|
|
) -> dict:
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
return headers
|
|
|
|
def _transform_messages(
|
|
self, messages: List[AllMessageValues]
|
|
) -> List[AllMessageValues]:
|
|
raise NotImplementedError
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
|
) -> BaseLLMException:
|
|
return ClarifaiError(message=error_message, status_code=status_code)
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LoggingClass,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: str,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> litellm.ModelResponse:
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=raw_response.text,
|
|
additional_args={"complete_input_dict": request_data},
|
|
)
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = raw_response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise ClarifaiError(
|
|
message=str(e),
|
|
status_code=raw_response.status_code,
|
|
)
|
|
except Exception as e:
|
|
raise ClarifaiError(
|
|
message=str(e),
|
|
status_code=422,
|
|
)
|
|
# print(completion_response)
|
|
try:
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response["outputs"]):
|
|
if len(item["data"]["text"]["raw"]) > 0:
|
|
message_obj = Message(content=item["data"]["text"]["raw"])
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason="stop",
|
|
index=idx + 1, # check
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response.choices = choices_list # type: ignore
|
|
|
|
except Exception as e:
|
|
raise ClarifaiError(
|
|
message=str(e),
|
|
status_code=422,
|
|
)
|
|
|
|
# Calculate Usage
|
|
prompt_tokens = token_counter(model=model, messages=messages)
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
|
)
|
|
model_response.model = model
|
|
setattr(
|
|
model_response,
|
|
"usage",
|
|
Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
),
|
|
)
|
|
return model_response
|
|
|
|
def get_model_response_iterator(
|
|
self,
|
|
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
|
sync_stream: bool,
|
|
json_mode: Optional[bool] = False,
|
|
) -> Any:
|
|
return ClarifaiModelResponseIterator(
|
|
model_response=streaming_response,
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
|
|
class ClarifaiModelResponseIterator(FakeStreamResponseIterator):
|
|
def __init__(
|
|
self,
|
|
model_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
|
json_mode: Optional[bool] = False,
|
|
):
|
|
super().__init__(
|
|
model_response=model_response,
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
|
try:
|
|
text = ""
|
|
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
|
is_finished = False
|
|
finish_reason = ""
|
|
usage: Optional[ChatCompletionUsageBlock] = None
|
|
provider_specific_fields = None
|
|
|
|
text = (
|
|
chunk.get("outputs", "")[0]
|
|
.get("data", "")
|
|
.get("text", "")
|
|
.get("raw", "")
|
|
)
|
|
|
|
index: int = 0
|
|
|
|
return GenericStreamingChunk(
|
|
text=text,
|
|
tool_use=tool_use,
|
|
is_finished=is_finished,
|
|
finish_reason=finish_reason,
|
|
usage=usage,
|
|
index=index,
|
|
provider_specific_fields=provider_specific_fields,
|
|
)
|
|
except json.JSONDecodeError:
|
|
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|