mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* build: merge branch * test: fix openai naming * fix(main.py): fix openai renaming * style: ignore function length for config factory * fix(sagemaker/): fix routing logic * fix: fix imports * fix: fix override
277 lines
9.8 KiB
Python
277 lines
9.8 KiB
Python
import json
|
|
import time
|
|
import types
|
|
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
|
|
from litellm.llms.prompt_templates.common_utils import convert_content_list_to_str
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.utils import (
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionUsageBlock,
|
|
Choices,
|
|
GenericStreamingChunk,
|
|
Message,
|
|
ModelResponse,
|
|
Usage,
|
|
)
|
|
|
|
from ..common_utils import CohereError
|
|
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
|
|
from ..common_utils import validate_environment as cohere_validate_environment
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
|
|
|
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
|
else:
|
|
LiteLLMLoggingObj = Any
|
|
|
|
|
|
class CohereTextConfig(BaseConfig):
|
|
"""
|
|
Reference: https://docs.cohere.com/reference/generate
|
|
|
|
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters:
|
|
|
|
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5.
|
|
|
|
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20.
|
|
|
|
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END.
|
|
|
|
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75.
|
|
|
|
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc.
|
|
|
|
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text.
|
|
|
|
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text.
|
|
|
|
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0.
|
|
|
|
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0.
|
|
|
|
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens.
|
|
|
|
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared.
|
|
|
|
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE.
|
|
|
|
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233}
|
|
"""
|
|
|
|
num_generations: Optional[int] = None
|
|
max_tokens: Optional[int] = None
|
|
truncate: Optional[str] = None
|
|
temperature: Optional[int] = None
|
|
preset: Optional[str] = None
|
|
end_sequences: Optional[list] = None
|
|
stop_sequences: Optional[list] = None
|
|
k: Optional[int] = None
|
|
p: Optional[int] = None
|
|
frequency_penalty: Optional[int] = None
|
|
presence_penalty: Optional[int] = None
|
|
return_likelihoods: Optional[str] = None
|
|
logit_bias: Optional[dict] = None
|
|
|
|
def __init__(
|
|
self,
|
|
num_generations: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
truncate: Optional[str] = None,
|
|
temperature: Optional[int] = None,
|
|
preset: Optional[str] = None,
|
|
end_sequences: Optional[list] = None,
|
|
stop_sequences: Optional[list] = None,
|
|
k: Optional[int] = None,
|
|
p: Optional[int] = None,
|
|
frequency_penalty: Optional[int] = None,
|
|
presence_penalty: Optional[int] = None,
|
|
return_likelihoods: Optional[str] = None,
|
|
logit_bias: Optional[dict] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
api_key: Optional[str] = None,
|
|
) -> dict:
|
|
return cohere_validate_environment(
|
|
headers=headers,
|
|
model=model,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
)
|
|
|
|
def _transform_messages(
|
|
self,
|
|
messages: List[AllMessageValues],
|
|
) -> List[AllMessageValues]:
|
|
raise NotImplementedError
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
|
) -> BaseLLMException:
|
|
return CohereError(status_code=status_code, message=error_message)
|
|
|
|
def get_supported_openai_params(self, model: str) -> List:
|
|
return [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"logit_bias",
|
|
"top_p",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
"stop",
|
|
"n",
|
|
"extra_headers",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
elif param == "temperature":
|
|
optional_params["temperature"] = value
|
|
elif param == "max_tokens":
|
|
optional_params["max_tokens"] = value
|
|
elif param == "n":
|
|
optional_params["num_generations"] = value
|
|
elif param == "logit_bias":
|
|
optional_params["logit_bias"] = value
|
|
elif param == "top_p":
|
|
optional_params["p"] = value
|
|
elif param == "frequency_penalty":
|
|
optional_params["frequency_penalty"] = value
|
|
elif param == "presence_penalty":
|
|
optional_params["presence_penalty"] = value
|
|
elif param == "stop":
|
|
optional_params["stop_sequences"] = value
|
|
return optional_params
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
prompt = " ".join(
|
|
convert_content_list_to_str(message=message) for message in messages
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.CohereConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
## Handle Tool Calling
|
|
if "tools" in optional_params:
|
|
_is_function_call = True
|
|
tool_calling_system_prompt = self._construct_cohere_tool_for_completion_api(
|
|
tools=optional_params["tools"]
|
|
)
|
|
optional_params["tools"] = tool_calling_system_prompt
|
|
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
**optional_params,
|
|
}
|
|
|
|
return data
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: Any,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
prompt = " ".join(
|
|
convert_content_list_to_str(message=message) for message in messages
|
|
)
|
|
completion_response = raw_response.json()
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response["generations"]):
|
|
if len(item["text"]) > 0:
|
|
message_obj = Message(content=item["text"])
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason=item["finish_reason"],
|
|
index=idx + 1,
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response.choices = choices_list # type: ignore
|
|
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
|
|
def _construct_cohere_tool_for_completion_api(
|
|
self,
|
|
tools: Optional[List] = None,
|
|
) -> dict:
|
|
if tools is None:
|
|
tools = []
|
|
return {"tools": tools}
|
|
|
|
def get_model_response_iterator(
|
|
self,
|
|
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
|
sync_stream: bool,
|
|
json_mode: Optional[bool] = False,
|
|
):
|
|
return CohereModelResponseIterator(
|
|
streaming_response=streaming_response,
|
|
sync_stream=sync_stream,
|
|
json_mode=json_mode,
|
|
)
|