mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* build: merge branch * test: fix openai naming * fix(main.py): fix openai renaming * style: ignore function length for config factory * fix(sagemaker/): fix routing logic * fix: fix imports * fix: fix override
224 lines
7.7 KiB
Python
224 lines
7.7 KiB
Python
import json
|
|
import time
|
|
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
|
|
|
import httpx
|
|
|
|
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
|
|
from litellm.llms.prompt_templates.common_utils import convert_content_list_to_str
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.utils import ModelResponse, Usage
|
|
|
|
from ..common_utils import NLPCloudError
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
|
|
LoggingClass = LiteLLMLoggingObj
|
|
else:
|
|
LoggingClass = Any
|
|
|
|
|
|
class NLPCloudConfig(BaseConfig):
|
|
"""
|
|
Reference: https://docs.nlpcloud.com/#generation
|
|
|
|
- `max_length` (int): Optional. The maximum number of tokens that the generated text should contain.
|
|
|
|
- `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text.
|
|
|
|
- `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence.
|
|
|
|
- `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result.
|
|
|
|
- `remove_input` (boolean): Optional. Whether to remove the input text from the result.
|
|
|
|
- `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated.
|
|
|
|
- `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities.
|
|
|
|
- `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
|
|
- `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering.
|
|
|
|
- `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times.
|
|
|
|
- `num_beams` (int): Optional. Number of beams for beam search.
|
|
|
|
- `num_return_sequences` (int): Optional. The number of independently computed returned sequences.
|
|
"""
|
|
|
|
max_length: Optional[int] = None
|
|
length_no_input: Optional[bool] = None
|
|
end_sequence: Optional[str] = None
|
|
remove_end_sequence: Optional[bool] = None
|
|
remove_input: Optional[bool] = None
|
|
bad_words: Optional[list] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
top_k: Optional[int] = None
|
|
repetition_penalty: Optional[float] = None
|
|
num_beams: Optional[int] = None
|
|
num_return_sequences: Optional[int] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_length: Optional[int] = None,
|
|
length_no_input: Optional[bool] = None,
|
|
end_sequence: Optional[str] = None,
|
|
remove_end_sequence: Optional[bool] = None,
|
|
remove_input: Optional[bool] = None,
|
|
bad_words: Optional[list] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
repetition_penalty: Optional[float] = None,
|
|
num_beams: Optional[int] = None,
|
|
num_return_sequences: Optional[int] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
api_key: Optional[str] = None,
|
|
) -> dict:
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Token {api_key}"
|
|
return headers
|
|
|
|
def get_supported_openai_params(self, model: str) -> List:
|
|
return [
|
|
"max_tokens",
|
|
"stream",
|
|
"temperature",
|
|
"top_p",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"n",
|
|
"stop",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "max_tokens":
|
|
optional_params["max_length"] = value
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "presence_penalty":
|
|
optional_params["presence_penalty"] = value
|
|
if param == "frequency_penalty":
|
|
optional_params["frequency_penalty"] = value
|
|
if param == "n":
|
|
optional_params["num_return_sequences"] = value
|
|
if param == "stop":
|
|
optional_params["stop_sequences"] = value
|
|
return optional_params
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
|
) -> BaseLLMException:
|
|
return NLPCloudError(
|
|
status_code=status_code, message=error_message, headers=headers
|
|
)
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
text = " ".join(convert_content_list_to_str(message) for message in messages)
|
|
|
|
data = {
|
|
"text": text,
|
|
**optional_params,
|
|
}
|
|
|
|
return data
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LoggingClass,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: Any,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=None,
|
|
api_key=api_key,
|
|
original_response=raw_response.text,
|
|
additional_args={"complete_input_dict": request_data},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = raw_response.json()
|
|
except Exception:
|
|
raise NLPCloudError(
|
|
message=raw_response.text, status_code=raw_response.status_code
|
|
)
|
|
if "error" in completion_response:
|
|
raise NLPCloudError(
|
|
message=completion_response["error"],
|
|
status_code=raw_response.status_code,
|
|
)
|
|
else:
|
|
try:
|
|
if len(completion_response["generated_text"]) > 0:
|
|
model_response.choices[0].message.content = ( # type: ignore
|
|
completion_response["generated_text"]
|
|
)
|
|
except Exception:
|
|
raise NLPCloudError(
|
|
message=json.dumps(completion_response),
|
|
status_code=raw_response.status_code,
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = completion_response["nb_input_tokens"]
|
|
completion_tokens = completion_response["nb_generated_tokens"]
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|