litellm-mirror/litellm/tests/test_client.py
2023-09-09 16:35:38 -07:00

90 lines
2.6 KiB
Python

#### What this tests ####
# This tests error logging (with custom user functions) for the `completion` + `embedding` endpoints w/ callbacks
import sys, os
import traceback
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import embedding, completion
litellm.success_callback = ["posthog", "helicone"]
litellm.failure_callback = ["sentry", "posthog"]
litellm.set_verbose = True
def logger_fn(model_call_object: dict):
# print(f"model call details: {model_call_object}")
pass
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
def test_completion_openai():
try:
print("running query")
response = completion(
model="gpt-3.5-turbo", messages=messages, logger_fn=logger_fn
)
print(f"response: {response}")
# Add any assertions here to check the response
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")
def test_completion_claude():
try:
response = completion(
model="claude-instant-1", messages=messages, logger_fn=logger_fn
)
# Add any assertions here to check the response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_non_openai():
try:
response = completion(
model="command-nightly", messages=messages, logger_fn=logger_fn
)
# Add any assertions here to check the response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_embedding_openai():
try:
response = embedding(
model="text-embedding-ada-002", input=[user_message], logger_fn=logger_fn
)
# Add any assertions here to check the response
print(f"response: {str(response)[:50]}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_bad_azure_embedding():
try:
response = embedding(
model="chatgpt-test", input=[user_message], logger_fn=logger_fn
)
# Add any assertions here to check the response
print(f"response: {str(response)[:50]}")
except Exception as e:
pass
# def test_good_azure_embedding():
# try:
# response = embedding(model='azure/azure-embedding-model', input=[user_message], logger_fn=logger_fn)
# # Add any assertions here to check the response
# print(f"response: {str(response)[:50]}")
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")