litellm-mirror/litellm/llms/bedrock/embed/embedding.py
Krish Dholakia 37f9705d6e
Bedrock Embeddings refactor + model support (#5462)
* refactor(bedrock): initial commit to refactor bedrock to a folder

Improve code readability + maintainability

* refactor: more refactor work

* fix: fix imports

* feat(bedrock/embeddings.py): support translating embedding into amazon embedding formats

* fix: fix linting errors

* test: skip test on end of life model

* fix(cohere/embed.py): fix linting error

* fix(cohere/embed.py): fix typing

* fix(cohere/embed.py): fix post-call logging for cohere embedding call

* test(test_embeddings.py): fix error message assertion in test
2024-09-01 13:29:58 -07:00

498 lines
19 KiB
Python

"""
Handles embedding calls to Bedrock's `/invoke` endpoint
"""
import copy
import json
import os
from copy import deepcopy
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
import httpx
import litellm
from litellm import get_secret
from litellm.llms.cohere.embed import embedding as cohere_embedding
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
)
from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
from ...base_aws_llm import BaseAWSLLM
from ..common_utils import BedrockError, get_runtime_endpoint
from .amazon_titan_g1_transformation import AmazonTitanG1Config
from .amazon_titan_multimodal_transformation import (
_transform_request as amazon_multimodal_transform_request,
)
from .amazon_titan_multimodal_transformation import (
_transform_response as amazon_multimodal_transform_response,
)
from .amazon_titan_v2_transformation import AmazonTitanV2Config
from .cohere_transformation import _transform_request as cohere_transform_request
class BedrockEmbedding(BaseAWSLLM):
def _load_credentials(
self,
optional_params: dict,
) -> Tuple[Any, str]:
try:
from botocore.credentials import Credentials
except ImportError as e:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
## CREDENTIALS ##
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_session_token = optional_params.pop("aws_session_token", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
### SET REGION NAME ###
if aws_region_name is None:
# check env #
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
if litellm_aws_region_name is not None and isinstance(
litellm_aws_region_name, str
):
aws_region_name = litellm_aws_region_name
standard_aws_region_name = get_secret("AWS_REGION", None)
if standard_aws_region_name is not None and isinstance(
standard_aws_region_name, str
):
aws_region_name = standard_aws_region_name
if aws_region_name is None:
aws_region_name = "us-west-2"
credentials: Credentials = self.get_credentials(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
aws_region_name=aws_region_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_role_name=aws_role_name,
aws_web_identity_token=aws_web_identity_token,
aws_sts_endpoint=aws_sts_endpoint,
)
return credentials, aws_region_name
async def async_embeddings(self):
pass
def _make_sync_call(
self,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
headers: dict,
data: dict,
) -> dict:
if client is None or not isinstance(client, HTTPHandler):
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
timeout = httpx.Timeout(timeout)
_params["timeout"] = timeout
client = _get_httpx_client(_params) # type: ignore
else:
client = client
try:
response = client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code
raise BedrockError(status_code=error_code, message=response.text)
except httpx.TimeoutException:
raise BedrockError(status_code=408, message="Timeout error occurred.")
return response.json()
def _single_func_embeddings(
self,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
batch_data: List[dict],
credentials: Any,
extra_headers: Optional[dict],
endpoint_url: str,
aws_region_name: str,
model: str,
logging_obj: Any,
):
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
responses: List[dict] = []
for data in batch_data:
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped = request.prepare()
## LOGGING
logging_obj.pre_call(
input=data,
api_key="",
additional_args={
"complete_input_dict": data,
"api_base": prepped.url,
"headers": prepped.headers,
},
)
response = self._make_sync_call(
client=client,
timeout=timeout,
api_base=prepped.url,
headers=prepped.headers,
data=data,
)
## LOGGING
logging_obj.post_call(
input=data,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
responses.append(response)
returned_response: Optional[EmbeddingResponse] = None
## TRANSFORM RESPONSE ##
if model == "amazon.titan-embed-image-v1":
returned_response = amazon_multimodal_transform_response(
response_list=responses, model=model
)
elif model == "amazon.titan-embed-text-v1":
returned_response = AmazonTitanG1Config()._transform_response(
response_list=responses, model=model
)
elif model == "amazon.titan-embed-text-v2:0":
returned_response = AmazonTitanV2Config()._transform_response(
response_list=responses, model=model
)
if returned_response is None:
raise Exception(
"Unable to map model response to known provider format. model={}".format(
model
)
)
return returned_response
def embeddings(
self,
model: str,
input: List[str],
api_base: Optional[str],
model_response: EmbeddingResponse,
print_verbose: Callable,
encoding,
logging_obj,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]],
timeout: Optional[Union[float, httpx.Timeout]],
aembedding: Optional[bool],
extra_headers: Optional[dict],
optional_params=None,
litellm_params=None,
) -> EmbeddingResponse:
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
credentials, aws_region_name = self._load_credentials(optional_params)
### TRANSFORMATION ###
provider = model.split(".")[0]
inference_params = copy.deepcopy(optional_params)
inference_params.pop(
"user", None
) # make sure user is not passed in for bedrock call
modelId = (
optional_params.pop("model_id", None) or model
) # default to model if not passed
data: Optional[CohereEmbeddingRequest] = None
batch_data: Optional[List] = None
if provider == "cohere":
data = cohere_transform_request(
input=input, inference_params=inference_params
)
elif provider == "amazon" and model in [
"amazon.titan-embed-image-v1",
"amazon.titan-embed-text-v1",
"amazon.titan-embed-text-v2:0",
]:
batch_data = []
for i in input:
if model == "amazon.titan-embed-image-v1":
transformed_request: AmazonEmbeddingRequest = (
amazon_multimodal_transform_request(
input=i, inference_params=inference_params
)
)
elif model == "amazon.titan-embed-text-v1":
transformed_request = AmazonTitanG1Config()._transform_request(
input=i, inference_params=inference_params
)
elif model == "amazon.titan-embed-text-v2:0":
transformed_request = AmazonTitanV2Config()._transform_request(
input=i, inference_params=inference_params
)
batch_data.append(transformed_request)
### SET RUNTIME ENDPOINT ###
endpoint_url = get_runtime_endpoint(
api_base=api_base,
aws_bedrock_runtime_endpoint=optional_params.pop(
"aws_bedrock_runtime_endpoint", None
),
aws_region_name=aws_region_name,
)
endpoint_url = f"{endpoint_url}/model/{modelId}/invoke"
if batch_data is not None:
return self._single_func_embeddings(
client=(
client
if client is not None and isinstance(client, HTTPHandler)
else None
),
timeout=timeout,
batch_data=batch_data,
credentials=credentials,
extra_headers=extra_headers,
endpoint_url=endpoint_url,
aws_region_name=aws_region_name,
model=model,
logging_obj=logging_obj,
)
elif data is None:
raise Exception("Unable to map request to provider")
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped = request.prepare()
## ROUTING ##
return cohere_embedding(
model=model,
input=input,
model_response=model_response,
logging_obj=logging_obj,
optional_params=optional_params,
encoding=encoding,
data=data, # type: ignore
complete_api_base=prepped.url,
api_key=None,
aembedding=aembedding,
timeout=timeout,
client=client,
headers=prepped.headers,
)
# def _embedding_func_single(
# model: str,
# input: str,
# client: Any,
# optional_params=None,
# encoding=None,
# logging_obj=None,
# ):
# if isinstance(input, str) is False:
# raise BedrockError(
# message="Bedrock Embedding API input must be type str | List[str]",
# status_code=400,
# )
# # logic for parsing in - calling - parsing out model embedding calls
# ## FORMAT EMBEDDING INPUT ##
# provider = model.split(".")[0]
# inference_params = copy.deepcopy(optional_params)
# inference_params.pop(
# "user", None
# ) # make sure user is not passed in for bedrock call
# modelId = (
# optional_params.pop("model_id", None) or model
# ) # default to model if not passed
# if provider == "amazon":
# input = input.replace(os.linesep, " ")
# data = {"inputText": input, **inference_params}
# # data = json.dumps(data)
# elif provider == "cohere":
# inference_params["input_type"] = inference_params.get(
# "input_type", "search_document"
# ) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
# data = {"texts": [input], **inference_params} # type: ignore
# body = json.dumps(data).encode("utf-8") # type: ignore
# ## LOGGING
# request_str = f"""
# response = client.invoke_model(
# body={body},
# modelId={modelId},
# accept="*/*",
# contentType="application/json",
# )""" # type: ignore
# logging_obj.pre_call(
# input=input,
# api_key="", # boto3 is used for init.
# additional_args={
# "complete_input_dict": {"model": modelId, "texts": input},
# "request_str": request_str,
# },
# )
# try:
# response = client.invoke_model(
# body=body,
# modelId=modelId,
# accept="*/*",
# contentType="application/json",
# )
# response_body = json.loads(response.get("body").read())
# ## LOGGING
# logging_obj.post_call(
# input=input,
# api_key="",
# additional_args={"complete_input_dict": data},
# original_response=json.dumps(response_body),
# )
# if provider == "cohere":
# response = response_body.get("embeddings")
# # flatten list
# response = [item for sublist in response for item in sublist]
# return response
# elif provider == "amazon":
# return response_body.get("embedding")
# except Exception as e:
# raise BedrockError(
# message=f"Embedding Error with model {model}: {e}", status_code=500
# )
# def embedding(
# model: str,
# input: Union[list, str],
# model_response: litellm.EmbeddingResponse,
# api_key: Optional[str] = None,
# logging_obj=None,
# optional_params=None,
# encoding=None,
# ):
# ### BOTO3 INIT ###
# # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
# aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
# aws_access_key_id = optional_params.pop("aws_access_key_id", None)
# aws_region_name = optional_params.pop("aws_region_name", None)
# aws_role_name = optional_params.pop("aws_role_name", None)
# aws_session_name = optional_params.pop("aws_session_name", None)
# aws_bedrock_runtime_endpoint = optional_params.pop(
# "aws_bedrock_runtime_endpoint", None
# )
# aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
# # use passed in BedrockRuntime.Client if provided, otherwise create a new one
# client = init_bedrock_client(
# aws_access_key_id=aws_access_key_id,
# aws_secret_access_key=aws_secret_access_key,
# aws_region_name=aws_region_name,
# aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
# aws_web_identity_token=aws_web_identity_token,
# aws_role_name=aws_role_name,
# aws_session_name=aws_session_name,
# )
# if isinstance(input, str):
# ## Embedding Call
# embeddings = [
# _embedding_func_single(
# model,
# input,
# optional_params=optional_params,
# client=client,
# logging_obj=logging_obj,
# )
# ]
# elif isinstance(input, list):
# ## Embedding Call - assuming this is a List[str]
# embeddings = [
# _embedding_func_single(
# model,
# i,
# optional_params=optional_params,
# client=client,
# logging_obj=logging_obj,
# )
# for i in input
# ] # [TODO]: make these parallel calls
# else:
# # enters this branch if input = int, ex. input=2
# raise BedrockError(
# message="Bedrock Embedding API input must be type str | List[str]",
# status_code=400,
# )
# ## Populate OpenAI compliant dictionary
# embedding_response = []
# for idx, embedding in enumerate(embeddings):
# embedding_response.append(
# {
# "object": "embedding",
# "index": idx,
# "embedding": embedding,
# }
# )
# model_response.object = "list"
# model_response.data = embedding_response
# model_response.model = model
# input_tokens = 0
# input_str = "".join(input)
# input_tokens += len(encoding.encode(input_str))
# usage = Usage(
# prompt_tokens=input_tokens,
# completion_tokens=0,
# total_tokens=input_tokens + 0,
# )
# model_response.usage = usage
# return model_response