mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* refactor(bedrock): initial commit to refactor bedrock to a folder Improve code readability + maintainability * refactor: more refactor work * fix: fix imports * feat(bedrock/embeddings.py): support translating embedding into amazon embedding formats * fix: fix linting errors * test: skip test on end of life model * fix(cohere/embed.py): fix linting error * fix(cohere/embed.py): fix typing * fix(cohere/embed.py): fix post-call logging for cohere embedding call * test(test_embeddings.py): fix error message assertion in test
498 lines
19 KiB
Python
498 lines
19 KiB
Python
"""
|
|
Handles embedding calls to Bedrock's `/invoke` endpoint
|
|
"""
|
|
|
|
import copy
|
|
import json
|
|
import os
|
|
from copy import deepcopy
|
|
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm import get_secret
|
|
from litellm.llms.cohere.embed import embedding as cohere_embedding
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
_get_httpx_client,
|
|
)
|
|
from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest
|
|
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
|
|
|
|
from ...base_aws_llm import BaseAWSLLM
|
|
from ..common_utils import BedrockError, get_runtime_endpoint
|
|
from .amazon_titan_g1_transformation import AmazonTitanG1Config
|
|
from .amazon_titan_multimodal_transformation import (
|
|
_transform_request as amazon_multimodal_transform_request,
|
|
)
|
|
from .amazon_titan_multimodal_transformation import (
|
|
_transform_response as amazon_multimodal_transform_response,
|
|
)
|
|
from .amazon_titan_v2_transformation import AmazonTitanV2Config
|
|
from .cohere_transformation import _transform_request as cohere_transform_request
|
|
|
|
|
|
class BedrockEmbedding(BaseAWSLLM):
|
|
def _load_credentials(
|
|
self,
|
|
optional_params: dict,
|
|
) -> Tuple[Any, str]:
|
|
try:
|
|
from botocore.credentials import Credentials
|
|
except ImportError as e:
|
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
|
## CREDENTIALS ##
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_session_token = optional_params.pop("aws_session_token", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
aws_role_name = optional_params.pop("aws_role_name", None)
|
|
aws_session_name = optional_params.pop("aws_session_name", None)
|
|
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
|
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
|
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
|
|
|
### SET REGION NAME ###
|
|
if aws_region_name is None:
|
|
# check env #
|
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
|
|
|
if litellm_aws_region_name is not None and isinstance(
|
|
litellm_aws_region_name, str
|
|
):
|
|
aws_region_name = litellm_aws_region_name
|
|
|
|
standard_aws_region_name = get_secret("AWS_REGION", None)
|
|
if standard_aws_region_name is not None and isinstance(
|
|
standard_aws_region_name, str
|
|
):
|
|
aws_region_name = standard_aws_region_name
|
|
|
|
if aws_region_name is None:
|
|
aws_region_name = "us-west-2"
|
|
|
|
credentials: Credentials = self.get_credentials(
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
aws_session_token=aws_session_token,
|
|
aws_region_name=aws_region_name,
|
|
aws_session_name=aws_session_name,
|
|
aws_profile_name=aws_profile_name,
|
|
aws_role_name=aws_role_name,
|
|
aws_web_identity_token=aws_web_identity_token,
|
|
aws_sts_endpoint=aws_sts_endpoint,
|
|
)
|
|
return credentials, aws_region_name
|
|
|
|
async def async_embeddings(self):
|
|
pass
|
|
|
|
def _make_sync_call(
|
|
self,
|
|
client: Optional[HTTPHandler],
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: dict,
|
|
) -> dict:
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
_params = {}
|
|
if timeout is not None:
|
|
if isinstance(timeout, float) or isinstance(timeout, int):
|
|
timeout = httpx.Timeout(timeout)
|
|
_params["timeout"] = timeout
|
|
client = _get_httpx_client(_params) # type: ignore
|
|
else:
|
|
client = client
|
|
try:
|
|
response = client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError as err:
|
|
error_code = err.response.status_code
|
|
raise BedrockError(status_code=error_code, message=response.text)
|
|
except httpx.TimeoutException:
|
|
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
|
|
|
return response.json()
|
|
|
|
def _single_func_embeddings(
|
|
self,
|
|
client: Optional[HTTPHandler],
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
batch_data: List[dict],
|
|
credentials: Any,
|
|
extra_headers: Optional[dict],
|
|
endpoint_url: str,
|
|
aws_region_name: str,
|
|
model: str,
|
|
logging_obj: Any,
|
|
):
|
|
try:
|
|
import boto3
|
|
from botocore.auth import SigV4Auth
|
|
from botocore.awsrequest import AWSRequest
|
|
from botocore.credentials import Credentials
|
|
except ImportError:
|
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
|
|
|
responses: List[dict] = []
|
|
for data in batch_data:
|
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
|
headers = {"Content-Type": "application/json"}
|
|
if extra_headers is not None:
|
|
headers = {"Content-Type": "application/json", **extra_headers}
|
|
request = AWSRequest(
|
|
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
|
)
|
|
sigv4.add_auth(request)
|
|
if (
|
|
extra_headers is not None and "Authorization" in extra_headers
|
|
): # prevent sigv4 from overwriting the auth header
|
|
request.headers["Authorization"] = extra_headers["Authorization"]
|
|
prepped = request.prepare()
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data,
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": prepped.url,
|
|
"headers": prepped.headers,
|
|
},
|
|
)
|
|
response = self._make_sync_call(
|
|
client=client,
|
|
timeout=timeout,
|
|
api_base=prepped.url,
|
|
headers=prepped.headers,
|
|
data=data,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=data,
|
|
api_key="",
|
|
original_response=response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
responses.append(response)
|
|
|
|
returned_response: Optional[EmbeddingResponse] = None
|
|
|
|
## TRANSFORM RESPONSE ##
|
|
if model == "amazon.titan-embed-image-v1":
|
|
returned_response = amazon_multimodal_transform_response(
|
|
response_list=responses, model=model
|
|
)
|
|
elif model == "amazon.titan-embed-text-v1":
|
|
returned_response = AmazonTitanG1Config()._transform_response(
|
|
response_list=responses, model=model
|
|
)
|
|
elif model == "amazon.titan-embed-text-v2:0":
|
|
returned_response = AmazonTitanV2Config()._transform_response(
|
|
response_list=responses, model=model
|
|
)
|
|
|
|
if returned_response is None:
|
|
raise Exception(
|
|
"Unable to map model response to known provider format. model={}".format(
|
|
model
|
|
)
|
|
)
|
|
|
|
return returned_response
|
|
|
|
def embeddings(
|
|
self,
|
|
model: str,
|
|
input: List[str],
|
|
api_base: Optional[str],
|
|
model_response: EmbeddingResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]],
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
aembedding: Optional[bool],
|
|
extra_headers: Optional[dict],
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
) -> EmbeddingResponse:
|
|
try:
|
|
import boto3
|
|
from botocore.auth import SigV4Auth
|
|
from botocore.awsrequest import AWSRequest
|
|
from botocore.credentials import Credentials
|
|
except ImportError:
|
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
|
|
|
credentials, aws_region_name = self._load_credentials(optional_params)
|
|
|
|
### TRANSFORMATION ###
|
|
provider = model.split(".")[0]
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop(
|
|
"user", None
|
|
) # make sure user is not passed in for bedrock call
|
|
modelId = (
|
|
optional_params.pop("model_id", None) or model
|
|
) # default to model if not passed
|
|
|
|
data: Optional[CohereEmbeddingRequest] = None
|
|
batch_data: Optional[List] = None
|
|
if provider == "cohere":
|
|
data = cohere_transform_request(
|
|
input=input, inference_params=inference_params
|
|
)
|
|
elif provider == "amazon" and model in [
|
|
"amazon.titan-embed-image-v1",
|
|
"amazon.titan-embed-text-v1",
|
|
"amazon.titan-embed-text-v2:0",
|
|
]:
|
|
batch_data = []
|
|
for i in input:
|
|
if model == "amazon.titan-embed-image-v1":
|
|
transformed_request: AmazonEmbeddingRequest = (
|
|
amazon_multimodal_transform_request(
|
|
input=i, inference_params=inference_params
|
|
)
|
|
)
|
|
elif model == "amazon.titan-embed-text-v1":
|
|
transformed_request = AmazonTitanG1Config()._transform_request(
|
|
input=i, inference_params=inference_params
|
|
)
|
|
elif model == "amazon.titan-embed-text-v2:0":
|
|
transformed_request = AmazonTitanV2Config()._transform_request(
|
|
input=i, inference_params=inference_params
|
|
)
|
|
batch_data.append(transformed_request)
|
|
|
|
### SET RUNTIME ENDPOINT ###
|
|
endpoint_url = get_runtime_endpoint(
|
|
api_base=api_base,
|
|
aws_bedrock_runtime_endpoint=optional_params.pop(
|
|
"aws_bedrock_runtime_endpoint", None
|
|
),
|
|
aws_region_name=aws_region_name,
|
|
)
|
|
endpoint_url = f"{endpoint_url}/model/{modelId}/invoke"
|
|
|
|
if batch_data is not None:
|
|
return self._single_func_embeddings(
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, HTTPHandler)
|
|
else None
|
|
),
|
|
timeout=timeout,
|
|
batch_data=batch_data,
|
|
credentials=credentials,
|
|
extra_headers=extra_headers,
|
|
endpoint_url=endpoint_url,
|
|
aws_region_name=aws_region_name,
|
|
model=model,
|
|
logging_obj=logging_obj,
|
|
)
|
|
elif data is None:
|
|
raise Exception("Unable to map request to provider")
|
|
|
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
|
headers = {"Content-Type": "application/json"}
|
|
if extra_headers is not None:
|
|
headers = {"Content-Type": "application/json", **extra_headers}
|
|
request = AWSRequest(
|
|
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
|
)
|
|
sigv4.add_auth(request)
|
|
if (
|
|
extra_headers is not None and "Authorization" in extra_headers
|
|
): # prevent sigv4 from overwriting the auth header
|
|
request.headers["Authorization"] = extra_headers["Authorization"]
|
|
prepped = request.prepare()
|
|
|
|
## ROUTING ##
|
|
return cohere_embedding(
|
|
model=model,
|
|
input=input,
|
|
model_response=model_response,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
data=data, # type: ignore
|
|
complete_api_base=prepped.url,
|
|
api_key=None,
|
|
aembedding=aembedding,
|
|
timeout=timeout,
|
|
client=client,
|
|
headers=prepped.headers,
|
|
)
|
|
|
|
# def _embedding_func_single(
|
|
# model: str,
|
|
# input: str,
|
|
# client: Any,
|
|
# optional_params=None,
|
|
# encoding=None,
|
|
# logging_obj=None,
|
|
# ):
|
|
# if isinstance(input, str) is False:
|
|
# raise BedrockError(
|
|
# message="Bedrock Embedding API input must be type str | List[str]",
|
|
# status_code=400,
|
|
# )
|
|
# # logic for parsing in - calling - parsing out model embedding calls
|
|
# ## FORMAT EMBEDDING INPUT ##
|
|
# provider = model.split(".")[0]
|
|
# inference_params = copy.deepcopy(optional_params)
|
|
# inference_params.pop(
|
|
# "user", None
|
|
# ) # make sure user is not passed in for bedrock call
|
|
# modelId = (
|
|
# optional_params.pop("model_id", None) or model
|
|
# ) # default to model if not passed
|
|
# if provider == "amazon":
|
|
# input = input.replace(os.linesep, " ")
|
|
# data = {"inputText": input, **inference_params}
|
|
# # data = json.dumps(data)
|
|
# elif provider == "cohere":
|
|
# inference_params["input_type"] = inference_params.get(
|
|
# "input_type", "search_document"
|
|
# ) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
|
|
# data = {"texts": [input], **inference_params} # type: ignore
|
|
# body = json.dumps(data).encode("utf-8") # type: ignore
|
|
# ## LOGGING
|
|
# request_str = f"""
|
|
# response = client.invoke_model(
|
|
# body={body},
|
|
# modelId={modelId},
|
|
# accept="*/*",
|
|
# contentType="application/json",
|
|
# )""" # type: ignore
|
|
# logging_obj.pre_call(
|
|
# input=input,
|
|
# api_key="", # boto3 is used for init.
|
|
# additional_args={
|
|
# "complete_input_dict": {"model": modelId, "texts": input},
|
|
# "request_str": request_str,
|
|
# },
|
|
# )
|
|
# try:
|
|
# response = client.invoke_model(
|
|
# body=body,
|
|
# modelId=modelId,
|
|
# accept="*/*",
|
|
# contentType="application/json",
|
|
# )
|
|
# response_body = json.loads(response.get("body").read())
|
|
# ## LOGGING
|
|
# logging_obj.post_call(
|
|
# input=input,
|
|
# api_key="",
|
|
# additional_args={"complete_input_dict": data},
|
|
# original_response=json.dumps(response_body),
|
|
# )
|
|
# if provider == "cohere":
|
|
# response = response_body.get("embeddings")
|
|
# # flatten list
|
|
# response = [item for sublist in response for item in sublist]
|
|
# return response
|
|
# elif provider == "amazon":
|
|
# return response_body.get("embedding")
|
|
# except Exception as e:
|
|
# raise BedrockError(
|
|
# message=f"Embedding Error with model {model}: {e}", status_code=500
|
|
# )
|
|
|
|
# def embedding(
|
|
# model: str,
|
|
# input: Union[list, str],
|
|
# model_response: litellm.EmbeddingResponse,
|
|
# api_key: Optional[str] = None,
|
|
# logging_obj=None,
|
|
# optional_params=None,
|
|
# encoding=None,
|
|
# ):
|
|
# ### BOTO3 INIT ###
|
|
# # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
# aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
# aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
# aws_region_name = optional_params.pop("aws_region_name", None)
|
|
# aws_role_name = optional_params.pop("aws_role_name", None)
|
|
# aws_session_name = optional_params.pop("aws_session_name", None)
|
|
# aws_bedrock_runtime_endpoint = optional_params.pop(
|
|
# "aws_bedrock_runtime_endpoint", None
|
|
# )
|
|
# aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
|
|
|
# # use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
|
# client = init_bedrock_client(
|
|
# aws_access_key_id=aws_access_key_id,
|
|
# aws_secret_access_key=aws_secret_access_key,
|
|
# aws_region_name=aws_region_name,
|
|
# aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
|
|
# aws_web_identity_token=aws_web_identity_token,
|
|
# aws_role_name=aws_role_name,
|
|
# aws_session_name=aws_session_name,
|
|
# )
|
|
# if isinstance(input, str):
|
|
# ## Embedding Call
|
|
# embeddings = [
|
|
# _embedding_func_single(
|
|
# model,
|
|
# input,
|
|
# optional_params=optional_params,
|
|
# client=client,
|
|
# logging_obj=logging_obj,
|
|
# )
|
|
# ]
|
|
# elif isinstance(input, list):
|
|
# ## Embedding Call - assuming this is a List[str]
|
|
# embeddings = [
|
|
# _embedding_func_single(
|
|
# model,
|
|
# i,
|
|
# optional_params=optional_params,
|
|
# client=client,
|
|
# logging_obj=logging_obj,
|
|
# )
|
|
# for i in input
|
|
# ] # [TODO]: make these parallel calls
|
|
# else:
|
|
# # enters this branch if input = int, ex. input=2
|
|
# raise BedrockError(
|
|
# message="Bedrock Embedding API input must be type str | List[str]",
|
|
# status_code=400,
|
|
# )
|
|
|
|
# ## Populate OpenAI compliant dictionary
|
|
# embedding_response = []
|
|
# for idx, embedding in enumerate(embeddings):
|
|
# embedding_response.append(
|
|
# {
|
|
# "object": "embedding",
|
|
# "index": idx,
|
|
# "embedding": embedding,
|
|
# }
|
|
# )
|
|
# model_response.object = "list"
|
|
# model_response.data = embedding_response
|
|
# model_response.model = model
|
|
# input_tokens = 0
|
|
|
|
# input_str = "".join(input)
|
|
|
|
# input_tokens += len(encoding.encode(input_str))
|
|
|
|
# usage = Usage(
|
|
# prompt_tokens=input_tokens,
|
|
# completion_tokens=0,
|
|
# total_tokens=input_tokens + 0,
|
|
# )
|
|
# model_response.usage = usage
|
|
|
|
# return model_response
|