mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
48 lines
No EOL
1.9 KiB
Python
48 lines
No EOL
1.9 KiB
Python
import sys, os
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
from litellm.llms.prompt_templates.factory import prompt_factory
|
|
|
|
def test_prompt_formatting():
|
|
try:
|
|
prompt = prompt_factory(model="mistralai/Mistral-7B-Instruct-v0.1", messages=[{"role": "system", "content": "Be a good bot"}, {"role": "user", "content": "Hello world"}])
|
|
assert prompt == "<s>[INST] Be a good bot [/INST]</s> [INST] Hello world [/INST]"
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {str(e)}")
|
|
# def logger_fn(user_model_dict):
|
|
# return
|
|
# print(f"user_model_dict: {user_model_dict}")
|
|
|
|
# messages=[{"role": "user", "content": "Write me a function to print hello world"}]
|
|
|
|
# # test if the first-party prompt templates work
|
|
# def test_huggingface_supported_models():
|
|
# model = "huggingface/WizardLM/WizardCoder-Python-34B-V1.0"
|
|
# response = completion(model=model, messages=messages, max_tokens=256, api_base="https://ji16r2iys9a8rjk2.us-east-1.aws.endpoints.huggingface.cloud", logger_fn=logger_fn)
|
|
# print(response['choices'][0]['message']['content'])
|
|
# return response
|
|
|
|
# test_huggingface_supported_models()
|
|
|
|
# # test if a custom prompt template works
|
|
# litellm.register_prompt_template(
|
|
# model="togethercomputer/LLaMA-2-7B-32K",
|
|
# roles={"system":"", "assistant":"Assistant:", "user":"User:"},
|
|
# pre_message_sep= "\n",
|
|
# post_message_sep= "\n"
|
|
# )
|
|
# def test_huggingface_custom_model():
|
|
# model = "huggingface/togethercomputer/LLaMA-2-7B-32K"
|
|
# response = completion(model=model, messages=messages, api_base="https://ecd4sb5n09bo4ei2.us-east-1.aws.endpoints.huggingface.cloud", logger_fn=logger_fn)
|
|
# print(response['choices'][0]['message']['content'])
|
|
# return response
|
|
|
|
# test_huggingface_custom_model() |