mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
237 lines
9.1 KiB
Python
237 lines
9.1 KiB
Python
import sys, os
|
|
from dotenv import load_dotenv
|
|
import copy
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
import litellm
|
|
from litellm.utils import trim_messages, get_token_count, get_valid_models, check_valid_key, validate_environment, function_to_dict, token_counter
|
|
|
|
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
|
|
|
|
# Test 1: Check trimming of normal message
|
|
def test_basic_trimming():
|
|
messages = [{"role": "user", "content": "This is a long message that definitely exceeds the token limit."}]
|
|
trimmed_messages = trim_messages(messages, model="claude-2", max_tokens=8)
|
|
print("trimmed messages")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
|
|
assert (get_token_count(messages=trimmed_messages, model="claude-2")) <= 8
|
|
# test_basic_trimming()
|
|
|
|
def test_basic_trimming_no_max_tokens_specified():
|
|
messages = [{"role": "user", "content": "This is a long message that is definitely under the token limit."}]
|
|
trimmed_messages = trim_messages(messages, model="gpt-4")
|
|
print("trimmed messages for gpt-4")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
|
|
assert (get_token_count(messages=trimmed_messages, model="gpt-4")) <= litellm.model_cost['gpt-4']['max_tokens']
|
|
# test_basic_trimming_no_max_tokens_specified()
|
|
|
|
def test_multiple_messages_trimming():
|
|
messages = [
|
|
{"role": "user", "content": "This is a long message that will exceed the token limit."},
|
|
{"role": "user", "content": "This is another long message that will also exceed the limit."}
|
|
]
|
|
trimmed_messages = trim_messages(messages=messages, model="gpt-3.5-turbo", max_tokens=20)
|
|
# print(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo"))
|
|
assert(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) <= 20
|
|
# test_multiple_messages_trimming()
|
|
|
|
def test_multiple_messages_no_trimming():
|
|
messages = [
|
|
{"role": "user", "content": "This is a long message that will exceed the token limit."},
|
|
{"role": "user", "content": "This is another long message that will also exceed the limit."}
|
|
]
|
|
trimmed_messages = trim_messages(messages=messages, model="gpt-3.5-turbo", max_tokens=100)
|
|
print("Trimmed messages")
|
|
print(trimmed_messages)
|
|
assert(messages==trimmed_messages)
|
|
|
|
# test_multiple_messages_no_trimming()
|
|
|
|
|
|
def test_large_trimming_multiple_messages():
|
|
messages = [{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}, {"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}]
|
|
trimmed_messages = trim_messages(messages, max_tokens=20, model="gpt-4-0613")
|
|
print("trimmed messages")
|
|
print(trimmed_messages)
|
|
assert(get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 20
|
|
# test_large_trimming()
|
|
|
|
def test_large_trimming_single_message():
|
|
messages = [{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}]
|
|
trimmed_messages = trim_messages(messages, max_tokens=5, model="gpt-4-0613")
|
|
assert(get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 5
|
|
assert(get_token_count(messages=trimmed_messages, model="gpt-4-0613")) > 0
|
|
|
|
|
|
def test_trimming_with_system_message_within_max_tokens():
|
|
# This message is 33 tokens long
|
|
messages = [{"role": "system", "content": "This is a short system message"}, {"role": "user", "content": "This is a medium normal message, let's say litellm is awesome."}]
|
|
trimmed_messages = trim_messages(messages, max_tokens=30, model="gpt-4-0613") # The system message should fit within the token limit
|
|
assert len(trimmed_messages) == 2
|
|
assert trimmed_messages[0]["content"] == "This is a short system message"
|
|
|
|
|
|
def test_trimming_with_system_message_exceeding_max_tokens():
|
|
# This message is 33 tokens long. The system message is 13 tokens long.
|
|
messages = [{"role": "system", "content": "This is a short system message"}, {"role": "user", "content": "This is a medium normal message, let's say litellm is awesome."}]
|
|
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
|
|
assert len(trimmed_messages) == 1
|
|
assert '..' in trimmed_messages[0]["content"]
|
|
|
|
def test_trimming_should_not_change_original_messages():
|
|
messages = [{"role": "system", "content": "This is a short system message"}, {"role": "user", "content": "This is a medium normal message, let's say litellm is awesome."}]
|
|
messages_copy = copy.deepcopy(messages)
|
|
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
|
|
assert(messages==messages_copy)
|
|
|
|
def test_get_valid_models():
|
|
old_environ = os.environ
|
|
os.environ = {'OPENAI_API_KEY': 'temp'} # mock set only openai key in environ
|
|
|
|
valid_models = get_valid_models()
|
|
print(valid_models)
|
|
|
|
# list of openai supported llms on litellm
|
|
expected_models = litellm.open_ai_chat_completion_models + litellm.open_ai_text_completion_models
|
|
|
|
assert(valid_models == expected_models)
|
|
|
|
# reset replicate env key
|
|
os.environ = old_environ
|
|
|
|
# test_get_valid_models()
|
|
|
|
def test_bad_key():
|
|
key = "bad-key"
|
|
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
|
|
print(response, key)
|
|
assert(response == False)
|
|
|
|
def test_good_key():
|
|
key = os.environ['OPENAI_API_KEY']
|
|
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
|
|
assert(response == True)
|
|
|
|
# test validate environment
|
|
|
|
def test_validate_environment_empty_model():
|
|
api_key = validate_environment()
|
|
if api_key is None:
|
|
raise Exception()
|
|
|
|
# test_validate_environment_empty_model()
|
|
|
|
def test_function_to_dict():
|
|
print("testing function to dict for get current weather")
|
|
def get_current_weather(location: str, unit: str):
|
|
"""Get the current weather in a given location
|
|
|
|
Parameters
|
|
----------
|
|
location : str
|
|
The city and state, e.g. San Francisco, CA
|
|
unit : {'celsius', 'fahrenheit'}
|
|
Temperature unit
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
a sentence indicating the weather
|
|
"""
|
|
if location == "Boston, MA":
|
|
return "The weather is 12F"
|
|
function_json = litellm.utils.function_to_dict(get_current_weather)
|
|
print(function_json)
|
|
|
|
expected_output = {
|
|
'name': 'get_current_weather',
|
|
'description': 'Get the current weather in a given location',
|
|
'parameters': {
|
|
'type': 'object',
|
|
'properties': {
|
|
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
|
|
'unit': {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
|
|
},
|
|
'required': ['location', 'unit']
|
|
}
|
|
}
|
|
print(expected_output)
|
|
|
|
assert function_json['name'] == expected_output["name"]
|
|
assert function_json["description"] == expected_output["description"]
|
|
assert function_json["parameters"]["type"] == expected_output["parameters"]["type"]
|
|
assert function_json["parameters"]["properties"]["location"] == expected_output["parameters"]["properties"]["location"]
|
|
|
|
# the enum can change it can be - which is why we don't assert on unit
|
|
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
|
|
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['celsius', 'fahrenheit']"}
|
|
|
|
assert function_json["parameters"]["required"] == expected_output["parameters"]["required"]
|
|
|
|
print("passed")
|
|
# test_function_to_dict()
|
|
|
|
|
|
def test_token_counter():
|
|
try:
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "hi how are you what time is it"
|
|
}
|
|
]
|
|
tokens = token_counter(
|
|
model = "gpt-3.5-turbo",
|
|
messages=messages
|
|
)
|
|
print("gpt-35-turbo")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(
|
|
model = "claude-2",
|
|
messages=messages
|
|
)
|
|
print("claude-2")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(
|
|
model = "palm/chat-bison",
|
|
messages=messages
|
|
)
|
|
print("palm/chat-bison")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(
|
|
model = "ollama/llama2",
|
|
messages=messages
|
|
)
|
|
print("ollama/llama2")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(
|
|
model = "anthropic.claude-instant-v1",
|
|
messages=messages
|
|
)
|
|
print("anthropic.claude-instant-v1")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
test_token_counter()
|
|
|
|
|
|
|
|
|
|
|