litellm-mirror/tests/llm_translation/test_azure_openai.py
Krish Dholakia 443ae55904
Azure OpenAI improvements - o3 native streaming, improved tool call + response format handling (#8292)
* fix(convert_dict_to_response.py): only convert if response is the response_format tool call passed in

Fixes https://github.com/BerriAI/litellm/issues/8241

* fix(gpt_transformation.py): makes sure response format / tools conversion doesn't remove previous tool calls

* refactor(gpt_transformation.py): refactor out json schema converstion to base config

keeps logic consistent across providers

* fix(o_series_transformation.py): support o3 mini native streaming

Fixes https://github.com/BerriAI/litellm/issues/8274

* fix(gpt_transformation.py): remove unused variables

* test: update test
2025-02-05 19:38:58 -08:00

438 lines
15 KiB
Python

import sys
import os
sys.path.insert(
0, os.path.abspath("../../")
) # Adds the parent directory to the system path
import pytest
from litellm.llms.azure.common_utils import process_azure_headers
from httpx import Headers
from base_embedding_unit_tests import BaseLLMEmbeddingTest
def test_process_azure_headers_empty():
result = process_azure_headers({})
assert result == {}, "Expected empty dictionary for no input"
def test_process_azure_headers_with_all_headers():
input_headers = Headers(
{
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"x-ratelimit-limit-tokens": "10000",
"x-ratelimit-remaining-tokens": "9000",
"other-header": "value",
}
)
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"x-ratelimit-limit-tokens": "10000",
"x-ratelimit-remaining-tokens": "9000",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-requests": "90",
"llm_provider-x-ratelimit-limit-tokens": "10000",
"llm_provider-x-ratelimit-remaining-tokens": "9000",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for all Azure headers"
def test_process_azure_headers_with_partial_headers():
input_headers = Headers(
{
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-tokens": "9000",
"other-header": "value",
}
)
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-tokens": "9000",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-tokens": "9000",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for partial Azure headers"
def test_process_azure_headers_with_no_matching_headers():
input_headers = Headers(
{"unrelated-header-1": "value1", "unrelated-header-2": "value2"}
)
expected_output = {
"llm_provider-unrelated-header-1": "value1",
"llm_provider-unrelated-header-2": "value2",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for non-matching headers"
def test_process_azure_headers_with_dict_input():
input_headers = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"other-header": "value",
}
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-requests": "90",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for dict input"
from httpx import Client
from unittest.mock import MagicMock, patch
from openai import AzureOpenAI
import litellm
from litellm import completion
import os
@pytest.mark.parametrize(
"input, call_type",
[
({"messages": [{"role": "user", "content": "Hello world"}]}, "completion"),
({"input": "Hello world"}, "embedding"),
({"prompt": "Hello world"}, "image_generation"),
],
)
@pytest.mark.parametrize(
"header_value",
[
"headers",
"extra_headers",
],
)
def test_azure_extra_headers(input, call_type, header_value):
from litellm import embedding, image_generation
http_client = Client()
messages = [{"role": "user", "content": "Hello world"}]
with patch.object(http_client, "send", new=MagicMock()) as mock_client:
litellm.client_session = http_client
try:
if call_type == "completion":
func = completion
elif call_type == "embedding":
func = embedding
elif call_type == "image_generation":
func = image_generation
data = {
"model": "azure/chatgpt-v-2",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com",
"api_version": "2023-07-01-preview",
"api_key": "my-azure-api-key",
header_value: {
"Authorization": "my-bad-key",
"Ocp-Apim-Subscription-Key": "hello-world-testing",
},
**input,
}
response = func(**data)
print(response)
except Exception as e:
print(e)
mock_client.assert_called()
print(f"mock_client.call_args: {mock_client.call_args}")
request = mock_client.call_args[0][0]
print(request.method) # This will print 'POST'
print(request.url) # This will print the full URL
print(request.headers) # This will print the full URL
auth_header = request.headers.get("Authorization")
apim_key = request.headers.get("Ocp-Apim-Subscription-Key")
print(auth_header)
assert auth_header == "my-bad-key"
assert apim_key == "hello-world-testing"
@pytest.mark.parametrize(
"api_base, model, expected_endpoint",
[
(
"https://my-endpoint-sweden-berri992.openai.azure.com",
"dall-e-3-test",
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/dall-e-3-test/images/generations?api-version=2023-12-01-preview",
),
(
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment",
"dall-e-3",
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment/images/generations?api-version=2023-12-01-preview",
),
],
)
def test_process_azure_endpoint_url(api_base, model, expected_endpoint):
from litellm.llms.azure.azure import AzureChatCompletion
azure_chat_completion = AzureChatCompletion()
input_args = {
"azure_client_params": {
"api_version": "2023-12-01-preview",
"azure_endpoint": api_base,
"azure_deployment": model,
"max_retries": 2,
"timeout": 600,
"api_key": "f28ab7b695af4154bc53498e5bdccb07",
},
"model": model,
}
result = azure_chat_completion.create_azure_base_url(**input_args)
assert result == expected_endpoint, "Unexpected endpoint"
class TestAzureEmbedding(BaseLLMEmbeddingTest):
def get_base_embedding_call_args(self) -> dict:
return {
"model": "azure/azure-embedding-model",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
}
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.AZURE
@patch("azure.identity.UsernamePasswordCredential")
@patch("azure.identity.get_bearer_token_provider")
def test_get_azure_ad_token_from_username_password(
mock_get_bearer_token_provider, mock_credential
):
from litellm.llms.azure.common_utils import (
get_azure_ad_token_from_username_password,
)
# Test inputs
client_id = "test-client-id"
username = "test-username"
password = "test-password"
# Mock the token provider function
mock_token_provider = lambda: "mock-token"
mock_get_bearer_token_provider.return_value = mock_token_provider
# Call the function
result = get_azure_ad_token_from_username_password(
client_id=client_id, azure_username=username, azure_password=password
)
# Verify UsernamePasswordCredential was called with correct arguments
mock_credential.assert_called_once_with(
client_id=client_id, username=username, password=password
)
# Verify get_bearer_token_provider was called
mock_get_bearer_token_provider.assert_called_once_with(
mock_credential.return_value, "https://cognitiveservices.azure.com/.default"
)
# Verify the result is the mock token provider
assert result == mock_token_provider
def test_azure_openai_gpt_4o_naming(monkeypatch):
from openai import AzureOpenAI
from pydantic import BaseModel, Field
monkeypatch.setenv("AZURE_API_VERSION", "2024-10-21")
client = AzureOpenAI(
api_key="test-api-key",
base_url="https://my-endpoint-sweden-berri992.openai.azure.com",
api_version="2023-12-01-preview",
)
class ResponseFormat(BaseModel):
number: str = Field(description="total number of days in a week")
days: list[str] = Field(description="name of days in a week")
with patch.object(client.chat.completions.with_raw_response, "create") as mock_post:
try:
completion(
model="azure/gpt4o",
messages=[{"role": "user", "content": "Hello world"}],
response_format=ResponseFormat,
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
print(mock_post.call_args.kwargs)
assert "tool_calls" not in mock_post.call_args.kwargs
def test_azure_gpt_4o_with_tool_call_and_response_format():
from litellm import completion
from typing import Optional
from pydantic import BaseModel
import litellm
class InvestigationOutput(BaseModel):
alert_explanation: Optional[str] = None
investigation: Optional[str] = None
conclusions_and_possible_root_causes: Optional[str] = None
next_steps: Optional[str] = None
related_logs: Optional[str] = None
app_or_infra: Optional[str] = None
external_links: Optional[str] = None
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "Returns the current date and time",
"strict": True,
"parameters": {
"properties": {
"timezone": {
"type": "string",
"description": "The timezone to get the current time for (e.g., 'UTC', 'America/New_York')",
}
},
"required": ["timezone"],
"type": "object",
"additionalProperties": False,
},
},
}
]
response = litellm.completion(
model="azure/gpt-4o",
messages=[
{
"role": "system",
"content": "You are a tool-calling AI assist provided with common devops and IT tools that you can use to troubleshoot problems or answer questions.\nWhenever possible you MUST first use tools to investigate then answer the question.",
},
{"role": "user", "content": "What is the current date and time in NYC?"},
],
drop_params=True,
temperature=0.00000001,
tools=tools,
tool_choice="auto",
response_format=InvestigationOutput, # commenting this line will cause the output to be correct
)
assert response.choices[0].finish_reason == "tool_calls"
print(response.to_json())
def test_map_openai_params():
"""
Ensure response_format does not override tools
"""
from litellm.llms.azure.chat.gpt_transformation import AzureOpenAIConfig
azure_openai_config = AzureOpenAIConfig()
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "Returns the current date and time",
"strict": True,
"parameters": {
"properties": {
"timezone": {
"type": "string",
"description": "The timezone to get the current time for (e.g., 'UTC', 'America/New_York')",
}
},
"required": ["timezone"],
"type": "object",
"additionalProperties": False,
},
},
}
]
received_args = {
"non_default_params": {
"temperature": 1e-08,
"response_format": {
"type": "json_schema",
"json_schema": {
"schema": {
"properties": {
"alert_explanation": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Alert Explanation",
},
"investigation": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Investigation",
},
"conclusions_and_possible_root_causes": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Conclusions And Possible Root Causes",
},
"next_steps": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Next Steps",
},
"related_logs": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Related Logs",
},
"app_or_infra": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "App Or Infra",
},
"external_links": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "External Links",
},
},
"title": "InvestigationOutput",
"type": "object",
"additionalProperties": False,
"required": [
"alert_explanation",
"investigation",
"conclusions_and_possible_root_causes",
"next_steps",
"related_logs",
"app_or_infra",
"external_links",
],
},
"name": "InvestigationOutput",
"strict": True,
},
},
"tools": tools,
"tool_choice": "auto",
},
"optional_params": {},
"model": "gpt-4o",
"drop_params": True,
"api_version": "2024-02-15-preview",
}
optional_params = azure_openai_config.map_openai_params(**received_args)
assert "tools" in optional_params
assert len(optional_params["tools"]) > 1