mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
470 lines
16 KiB
Python
470 lines
16 KiB
Python
import sys, os, platform, time, copy
|
|
import threading
|
|
import shutil, random, traceback
|
|
|
|
messages: list = []
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path - for litellm local dev
|
|
|
|
try:
|
|
import uvicorn
|
|
import fastapi
|
|
import tomli as tomllib
|
|
import appdirs
|
|
import tomli_w
|
|
import backoff
|
|
except ImportError:
|
|
import subprocess
|
|
import sys
|
|
|
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "uvicorn", "fastapi", "tomli", "appdirs", "tomli-w", "backoff"])
|
|
import uvicorn
|
|
import fastapi
|
|
import tomli as tomllib
|
|
import appdirs
|
|
import tomli_w
|
|
|
|
try:
|
|
from .llm import litellm_completion
|
|
except ImportError as e:
|
|
from llm import litellm_completion # type: ignore
|
|
|
|
import random
|
|
|
|
list_of_messages = [
|
|
"'The thing I wish you improved is...'",
|
|
"'A feature I really want is...'",
|
|
"'The worst thing about this product is...'",
|
|
"'This product would be better if...'",
|
|
"'I don't like how this works...'",
|
|
"'It would help me if you could add...'",
|
|
"'This feature doesn't meet my needs because...'",
|
|
"'I get frustrated when the product...'",
|
|
]
|
|
|
|
|
|
def generate_feedback_box():
|
|
box_width = 60
|
|
|
|
# Select a random message
|
|
message = random.choice(list_of_messages)
|
|
|
|
print()
|
|
print('\033[1;37m' + '#' + '-' * box_width + '#\033[0m')
|
|
print('\033[1;37m' + '#' + ' ' * box_width + '#\033[0m')
|
|
print('\033[1;37m' + '# {:^59} #\033[0m'.format(message))
|
|
print('\033[1;37m' + '# {:^59} #\033[0m'.format('https://github.com/BerriAI/litellm/issues/new'))
|
|
print('\033[1;37m' + '#' + ' ' * box_width + '#\033[0m')
|
|
print('\033[1;37m' + '#' + '-' * box_width + '#\033[0m')
|
|
print()
|
|
print(' Thank you for using LiteLLM! - Krrish & Ishaan')
|
|
print()
|
|
print()
|
|
|
|
|
|
generate_feedback_box()
|
|
|
|
print()
|
|
print("\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m")
|
|
print()
|
|
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
|
|
print()
|
|
|
|
import litellm
|
|
from fastapi import FastAPI, Request
|
|
from fastapi.routing import APIRouter
|
|
from fastapi.encoders import jsonable_encoder
|
|
from fastapi.responses import StreamingResponse, FileResponse
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
import json
|
|
import logging
|
|
|
|
app = FastAPI(docs_url="/", title="LiteLLM API")
|
|
router = APIRouter()
|
|
origins = ["*"]
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
user_api_base = None
|
|
user_model = None
|
|
user_debug = False
|
|
user_max_tokens = None
|
|
user_temperature = None
|
|
user_telemetry = True
|
|
user_config = None
|
|
user_headers = None
|
|
config_filename = "litellm.secrets.toml"
|
|
config_dir = os.getcwd()
|
|
config_dir = appdirs.user_config_dir("litellm")
|
|
user_config_path = os.path.join(config_dir, config_filename)
|
|
log_file = 'api_log.json'
|
|
|
|
|
|
#### HELPER FUNCTIONS ####
|
|
def print_verbose(print_statement):
|
|
global user_debug
|
|
if user_debug:
|
|
print(print_statement)
|
|
|
|
|
|
def find_avatar_url(role):
|
|
role = role.replace(" ", "%20")
|
|
avatar_filename = f"avatars/{role}.png"
|
|
avatar_url = f"/static/{avatar_filename}"
|
|
return avatar_url
|
|
|
|
|
|
def usage_telemetry(
|
|
feature: str): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
|
|
if user_telemetry:
|
|
data = {
|
|
"feature": feature # "local_proxy_server"
|
|
}
|
|
threading.Thread(target=litellm.utils.litellm_telemetry, args=(data,), daemon=True).start()
|
|
|
|
|
|
def add_keys_to_config(key, value):
|
|
# Check if file exists
|
|
if os.path.exists(user_config_path):
|
|
# Load existing file
|
|
with open(user_config_path, "rb") as f:
|
|
config = tomllib.load(f)
|
|
else:
|
|
# File doesn't exist, create empty config
|
|
config = {}
|
|
|
|
# Add new key
|
|
config.setdefault('keys', {})[key] = value
|
|
|
|
# Write config to file
|
|
with open(user_config_path, 'wb') as f:
|
|
tomli_w.dump(config, f)
|
|
|
|
|
|
def save_params_to_config(data: dict):
|
|
# Check if file exists
|
|
if os.path.exists(user_config_path):
|
|
# Load existing file
|
|
with open(user_config_path, "rb") as f:
|
|
config = tomllib.load(f)
|
|
else:
|
|
# File doesn't exist, create empty config
|
|
config = {}
|
|
|
|
config.setdefault('general', {})
|
|
|
|
## general config
|
|
general_settings = data["general"]
|
|
|
|
for key, value in general_settings.items():
|
|
config["general"][key] = value
|
|
|
|
## model-specific config
|
|
config.setdefault("model", {})
|
|
config["model"].setdefault(user_model, {})
|
|
|
|
user_model_config = data[user_model]
|
|
model_key = model_key = user_model_config.pop("alias", user_model)
|
|
config["model"].setdefault(model_key, {})
|
|
for key, value in user_model_config.items():
|
|
config["model"][model_key][key] = value
|
|
|
|
# Write config to file
|
|
with open(user_config_path, 'wb') as f:
|
|
tomli_w.dump(config, f)
|
|
|
|
|
|
def load_config():
|
|
try:
|
|
global user_config, user_api_base, user_max_tokens, user_temperature, user_model
|
|
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
|
with open(user_config_path, "rb") as f:
|
|
user_config = tomllib.load(f)
|
|
|
|
## load keys
|
|
if "keys" in user_config:
|
|
for key in user_config["keys"]:
|
|
os.environ[key] = user_config["keys"][key] # litellm can read keys from the environment
|
|
## settings
|
|
if "general" in user_config:
|
|
litellm.add_function_to_prompt = user_config["general"].get("add_function_to_prompt",
|
|
True) # by default add function to prompt if unsupported by provider
|
|
litellm.drop_params = user_config["general"].get("drop_params",
|
|
True) # by default drop params if unsupported by provider
|
|
litellm.model_fallbacks = user_config["general"].get("fallbacks",
|
|
None) # fallback models in case initial completion call fails
|
|
default_model = user_config["general"].get("default_model", None) # route all requests to this model.
|
|
|
|
if user_model is None: # `litellm --model <model-name>`` > default_model.
|
|
user_model = default_model
|
|
|
|
## load model config - to set this run `litellm --config`
|
|
model_config = None
|
|
if "model" in user_config:
|
|
if user_model in user_config["model"]:
|
|
model_config = user_config["model"][user_model]
|
|
|
|
print_verbose(f"user_config: {user_config}")
|
|
print_verbose(f"model_config: {model_config}")
|
|
print_verbose(f"user_model: {user_model}")
|
|
if model_config is None:
|
|
return
|
|
|
|
user_max_tokens = model_config.get("max_tokens", None)
|
|
user_temperature = model_config.get("temperature", None)
|
|
user_api_base = model_config.get("api_base", None)
|
|
|
|
## custom prompt template
|
|
if "prompt_template" in model_config:
|
|
model_prompt_template = model_config["prompt_template"]
|
|
if len(model_prompt_template.keys()) > 0: # if user has initialized this at all
|
|
litellm.register_prompt_template(
|
|
model=user_model,
|
|
initial_prompt_value=model_prompt_template.get("MODEL_PRE_PROMPT", ""),
|
|
roles={
|
|
"system": {
|
|
"pre_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_START_TOKEN", ""),
|
|
"post_message": model_prompt_template.get("MODEL_SYSTEM_MESSAGE_END_TOKEN", ""),
|
|
},
|
|
"user": {
|
|
"pre_message": model_prompt_template.get("MODEL_USER_MESSAGE_START_TOKEN", ""),
|
|
"post_message": model_prompt_template.get("MODEL_USER_MESSAGE_END_TOKEN", ""),
|
|
},
|
|
"assistant": {
|
|
"pre_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""),
|
|
"post_message": model_prompt_template.get("MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""),
|
|
}
|
|
},
|
|
final_prompt_value=model_prompt_template.get("MODEL_POST_PROMPT", ""),
|
|
)
|
|
except:
|
|
pass
|
|
|
|
|
|
def initialize(model, alias, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params,
|
|
add_function_to_prompt, headers, save):
|
|
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature, user_telemetry, user_headers
|
|
user_model = model
|
|
user_debug = debug
|
|
load_config()
|
|
dynamic_config = {"general": {}, user_model: {}}
|
|
if headers: # model-specific param
|
|
user_headers = headers
|
|
dynamic_config[user_model]["headers"] = headers
|
|
if api_base: # model-specific param
|
|
user_api_base = api_base
|
|
dynamic_config[user_model]["api_base"] = api_base
|
|
if max_tokens: # model-specific param
|
|
user_max_tokens = max_tokens
|
|
dynamic_config[user_model]["max_tokens"] = max_tokens
|
|
if temperature: # model-specific param
|
|
user_temperature = temperature
|
|
dynamic_config[user_model]["temperature"] = temperature
|
|
if alias: # model-specific param
|
|
dynamic_config[user_model]["alias"] = alias
|
|
if drop_params == True: # litellm-specific param
|
|
litellm.drop_params = True
|
|
dynamic_config["general"]["drop_params"] = True
|
|
if add_function_to_prompt == True: # litellm-specific param
|
|
litellm.add_function_to_prompt = True
|
|
dynamic_config["general"]["add_function_to_prompt"] = True
|
|
if max_budget: # litellm-specific param
|
|
litellm.max_budget = max_budget
|
|
dynamic_config["general"]["max_budget"] = max_budget
|
|
if save:
|
|
save_params_to_config(dynamic_config)
|
|
with open(user_config_path) as f:
|
|
print(f.read())
|
|
print("\033[1;32mDone successfully\033[0m")
|
|
user_telemetry = telemetry
|
|
usage_telemetry(feature="local_proxy_server")
|
|
|
|
def track_cost_callback(
|
|
kwargs, # kwargs to completion
|
|
completion_response, # response from completion
|
|
start_time, end_time # start/end time
|
|
):
|
|
# track cost like this
|
|
# {
|
|
# "Oct12": {
|
|
# "gpt-4": 10,
|
|
# "claude-2": 12.01,
|
|
# },
|
|
# "Oct 15": {
|
|
# "ollama/llama2": 0.0,
|
|
# "gpt2": 1.2
|
|
# }
|
|
# }
|
|
try:
|
|
|
|
# for streaming responses
|
|
if "complete_streaming_response" in kwargs:
|
|
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
|
|
completion_response = kwargs["complete_streaming_response"]
|
|
input_text = kwargs["messages"]
|
|
output_text = completion_response["choices"][0]["message"]["content"]
|
|
response_cost = litellm.completion_cost(
|
|
model=kwargs["model"],
|
|
messages=input_text,
|
|
completion=output_text
|
|
)
|
|
model = kwargs['model']
|
|
|
|
# for non streaming responses
|
|
else:
|
|
# we pass the completion_response obj
|
|
if kwargs["stream"] != True:
|
|
response_cost = litellm.completion_cost(completion_response=completion_response)
|
|
model = completion_response["model"]
|
|
|
|
# read/write from json for storing daily model costs
|
|
cost_data = {}
|
|
try:
|
|
with open("costs.json") as f:
|
|
cost_data = json.load(f)
|
|
except FileNotFoundError:
|
|
cost_data = {}
|
|
import datetime
|
|
date = datetime.datetime.now().strftime("%b-%d-%Y")
|
|
if date not in cost_data:
|
|
cost_data[date] = {}
|
|
|
|
if kwargs["model"] in cost_data[date]:
|
|
cost_data[date][kwargs["model"]]["cost"] += response_cost
|
|
cost_data[date][kwargs["model"]]["num_requests"] += 1
|
|
else:
|
|
cost_data[date][kwargs["model"]] = {
|
|
"cost": response_cost,
|
|
"num_requests": 1
|
|
}
|
|
|
|
with open("costs.json", "w") as f:
|
|
json.dump(cost_data, f, indent=2)
|
|
|
|
except:
|
|
pass
|
|
|
|
|
|
def logger(
|
|
kwargs, # kwargs to completion
|
|
completion_response=None, # response from completion
|
|
start_time=None,
|
|
end_time=None # start/end time
|
|
):
|
|
log_event_type = kwargs['log_event_type']
|
|
try:
|
|
if log_event_type == 'pre_api_call':
|
|
inference_params = copy.deepcopy(kwargs)
|
|
timestamp = inference_params.pop('start_time')
|
|
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
|
log_data = {
|
|
dt_key: {
|
|
'pre_api_call': inference_params
|
|
}
|
|
}
|
|
|
|
try:
|
|
with open(log_file, 'r') as f:
|
|
existing_data = json.load(f)
|
|
except FileNotFoundError:
|
|
existing_data = {}
|
|
|
|
existing_data.update(log_data)
|
|
|
|
def write_to_log():
|
|
with open(log_file, 'w') as f:
|
|
json.dump(existing_data, f, indent=2)
|
|
|
|
thread = threading.Thread(target=write_to_log, daemon=True)
|
|
thread.start()
|
|
elif log_event_type == 'post_api_call':
|
|
if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get(
|
|
"complete_streaming_response", False):
|
|
inference_params = copy.deepcopy(kwargs)
|
|
timestamp = inference_params.pop('start_time')
|
|
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
|
|
|
with open(log_file, 'r') as f:
|
|
existing_data = json.load(f)
|
|
|
|
existing_data[dt_key]['post_api_call'] = inference_params
|
|
|
|
def write_to_log():
|
|
with open(log_file, 'w') as f:
|
|
json.dump(existing_data, f, indent=2)
|
|
|
|
thread = threading.Thread(target=write_to_log, daemon=True)
|
|
thread.start()
|
|
except:
|
|
pass
|
|
|
|
|
|
litellm.input_callback = [logger]
|
|
litellm.success_callback = [logger]
|
|
litellm.failure_callback = [logger]
|
|
|
|
|
|
#### API ENDPOINTS ####
|
|
@router.get("/models") # if project requires model list
|
|
def model_list():
|
|
if user_model != None:
|
|
return dict(
|
|
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
|
|
object="list",
|
|
)
|
|
else:
|
|
all_models = litellm.utils.get_valid_models()
|
|
return dict(
|
|
data=[{"id": model, "object": "model", "created": 1677610602, "owned_by": "openai"} for model in
|
|
all_models],
|
|
object="list",
|
|
)
|
|
|
|
|
|
@router.post("/v1/completions")
|
|
@router.post("/completions")
|
|
async def completion(request: Request):
|
|
data = await request.json()
|
|
return litellm_completion(data=data, type="completion", user_model=user_model, user_temperature=user_temperature,
|
|
user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers,
|
|
user_debug=user_debug)
|
|
|
|
|
|
@router.post("/v1/chat/completions")
|
|
@router.post("/chat/completions")
|
|
async def chat_completion(request: Request):
|
|
data = await request.json()
|
|
print_verbose(f"data passed in: {data}")
|
|
return litellm_completion(data, type="chat_completion", user_model=user_model,
|
|
user_temperature=user_temperature, user_max_tokens=user_max_tokens,
|
|
user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug)
|
|
|
|
|
|
def print_cost_logs():
|
|
with open('costs.json', 'r') as f:
|
|
# print this in green
|
|
print("\033[1;32m")
|
|
print(f.read())
|
|
print("\033[0m")
|
|
return
|
|
|
|
|
|
@router.get("/ollama_logs")
|
|
async def retrieve_server_log(request: Request):
|
|
filepath = os.path.expanduser('~/.ollama/logs/server.log')
|
|
return FileResponse(filepath)
|
|
|
|
|
|
@router.get("/")
|
|
async def home(request: Request):
|
|
return "LiteLLM: RUNNING"
|
|
|
|
|
|
app.include_router(router)
|