mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
584 lines
No EOL
24 KiB
Python
584 lines
No EOL
24 KiB
Python
import sys, os
|
|
import time
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
import litellm
|
|
from litellm import embedding, completion
|
|
from litellm.caching import Cache
|
|
import random
|
|
# litellm.set_verbose=True
|
|
|
|
messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
|
# comment
|
|
|
|
import random
|
|
import string
|
|
|
|
def generate_random_word(length=4):
|
|
letters = string.ascii_lowercase
|
|
return ''.join(random.choice(letters) for _ in range(length))
|
|
|
|
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
|
def test_caching_v2(): # test in memory cache
|
|
try:
|
|
litellm.set_verbose=True
|
|
litellm.cache = Cache()
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.cache = None # disable cache
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
if response2['choices'][0]['message']['content'] != response1['choices'][0]['message']['content']:
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_caching_v2()
|
|
|
|
|
|
|
|
def test_caching_with_models_v2():
|
|
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
|
|
litellm.cache = Cache()
|
|
print("test2 for caching")
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
|
|
response3 = completion(model="command-nightly", messages=messages, caching=True)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']:
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
# test_caching_with_models_v2()
|
|
|
|
embedding_large_text = """
|
|
small text
|
|
""" * 5
|
|
|
|
# # test_caching_with_models()
|
|
def test_embedding_caching():
|
|
import time
|
|
litellm.cache = Cache()
|
|
text_to_embed = [embedding_large_text]
|
|
start_time = time.time()
|
|
embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
|
|
end_time = time.time()
|
|
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
|
|
|
time.sleep(1)
|
|
start_time = time.time()
|
|
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
|
|
end_time = time.time()
|
|
print(f"embedding2: {embedding2}")
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
|
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
|
print(f"embedding1: {embedding1}")
|
|
print(f"embedding2: {embedding2}")
|
|
pytest.fail("Error occurred: Embedding caching failed")
|
|
|
|
# test_embedding_caching()
|
|
|
|
|
|
def test_embedding_caching_azure():
|
|
print("Testing azure embedding caching")
|
|
import time
|
|
litellm.cache = Cache()
|
|
text_to_embed = [embedding_large_text]
|
|
|
|
api_key = os.environ['AZURE_API_KEY']
|
|
api_base = os.environ['AZURE_API_BASE']
|
|
api_version = os.environ['AZURE_API_VERSION']
|
|
|
|
os.environ['AZURE_API_VERSION'] = ""
|
|
os.environ['AZURE_API_BASE'] = ""
|
|
os.environ['AZURE_API_KEY'] = ""
|
|
|
|
|
|
start_time = time.time()
|
|
print("AZURE CONFIGS")
|
|
print(api_version)
|
|
print(api_key)
|
|
print(api_base)
|
|
embedding1 = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
caching=True
|
|
)
|
|
end_time = time.time()
|
|
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
|
|
|
time.sleep(1)
|
|
start_time = time.time()
|
|
embedding2 = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
caching=True
|
|
)
|
|
end_time = time.time()
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
|
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
|
print(f"embedding1: {embedding1}")
|
|
print(f"embedding2: {embedding2}")
|
|
pytest.fail("Error occurred: Embedding caching failed")
|
|
|
|
os.environ['AZURE_API_VERSION'] = api_version
|
|
os.environ['AZURE_API_BASE'] = api_base
|
|
os.environ['AZURE_API_KEY'] = api_key
|
|
|
|
# test_embedding_caching_azure()
|
|
|
|
|
|
def test_redis_cache_completion():
|
|
litellm.set_verbose = False
|
|
|
|
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
|
|
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
print("test2 for caching")
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20)
|
|
response3 = completion(model="gpt-3.5-turbo", messages=messages, caching=True, temperature=0.5)
|
|
response4 = completion(model="command-nightly", messages=messages, caching=True)
|
|
|
|
print("\nresponse 1", response1)
|
|
print("\nresponse 2", response2)
|
|
print("\nresponse 3", response3)
|
|
print("\nresponse 4", response4)
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
|
|
"""
|
|
1 & 2 should be exactly the same
|
|
1 & 3 should be different, since input params are diff
|
|
1 & 4 should be diff, since models are diff
|
|
"""
|
|
if response1['choices'][0]['message']['content'] != response2['choices'][0]['message']['content']: # 1 and 2 should be the same
|
|
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
if response1['choices'][0]['message']['content'] == response3['choices'][0]['message']['content']:
|
|
# if input params like seed, max_tokens are diff it should NOT be a cache hit
|
|
print(f"response1: {response1}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:")
|
|
if response1['choices'][0]['message']['content'] == response4['choices'][0]['message']['content']:
|
|
# if models are different, it should not return cached response
|
|
print(f"response1: {response1}")
|
|
print(f"response4: {response4}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
# test_redis_cache_completion()
|
|
|
|
def test_redis_cache_completion_stream():
|
|
try:
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
litellm.callbacks = []
|
|
litellm.set_verbose = True
|
|
random_number = random.randint(1, 100000) # add a random number to ensure it's always adding / reading from cache
|
|
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_number}"}]
|
|
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
print("test for caching, streaming + completion")
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
|
|
response_1_content = ""
|
|
for chunk in response1:
|
|
print(chunk)
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
time.sleep(0.5)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=0.2, stream=True)
|
|
response_2_content = ""
|
|
for chunk in response2:
|
|
print(chunk)
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
print("\nresponse 1", response_1_content)
|
|
print("\nresponse 2", response_2_content)
|
|
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
litellm.success_callback = []
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
litellm.success_callback = []
|
|
raise e
|
|
"""
|
|
|
|
1 & 2 should be exactly the same
|
|
"""
|
|
# test_redis_cache_completion_stream()
|
|
|
|
|
|
def test_redis_cache_acompletion_stream():
|
|
import asyncio
|
|
try:
|
|
litellm.set_verbose = True
|
|
random_word = generate_random_word()
|
|
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_word}"}]
|
|
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
print("test for caching, streaming + completion")
|
|
response_1_content = ""
|
|
response_2_content = ""
|
|
|
|
async def call1():
|
|
nonlocal response_1_content
|
|
response1 = await litellm.acompletion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=1, stream=True)
|
|
async for chunk in response1:
|
|
print(chunk)
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
asyncio.run(call1())
|
|
time.sleep(0.5)
|
|
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
|
|
|
async def call2():
|
|
nonlocal response_2_content
|
|
response2 = await litellm.acompletion(model="gpt-3.5-turbo", messages=messages, max_tokens=40, temperature=1, stream=True)
|
|
async for chunk in response2:
|
|
print(chunk)
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
print(response_2_content)
|
|
asyncio.run(call2())
|
|
print("\nresponse 1", response_1_content)
|
|
print("\nresponse 2", response_2_content)
|
|
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
raise e
|
|
# test_redis_cache_acompletion_stream()
|
|
|
|
def test_redis_cache_acompletion_stream_bedrock():
|
|
import asyncio
|
|
try:
|
|
litellm.set_verbose = True
|
|
random_word = generate_random_word()
|
|
messages = [{"role": "user", "content": f"write a one sentence poem about: {random_word}"}]
|
|
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
print("test for caching, streaming + completion")
|
|
response_1_content = ""
|
|
response_2_content = ""
|
|
|
|
async def call1():
|
|
nonlocal response_1_content
|
|
response1 = await litellm.acompletion(model="bedrock/anthropic.claude-v1", messages=messages, max_tokens=40, temperature=1, stream=True)
|
|
async for chunk in response1:
|
|
print(chunk)
|
|
response_1_content += chunk.choices[0].delta.content or ""
|
|
print(response_1_content)
|
|
asyncio.run(call1())
|
|
time.sleep(0.5)
|
|
print("\n\n Response 1 content: ", response_1_content, "\n\n")
|
|
|
|
async def call2():
|
|
nonlocal response_2_content
|
|
response2 = await litellm.acompletion(model="bedrock/anthropic.claude-v1", messages=messages, max_tokens=40, temperature=1, stream=True)
|
|
async for chunk in response2:
|
|
print(chunk)
|
|
response_2_content += chunk.choices[0].delta.content or ""
|
|
print(response_2_content)
|
|
asyncio.run(call2())
|
|
print("\nresponse 1", response_1_content)
|
|
print("\nresponse 2", response_2_content)
|
|
assert response_1_content == response_2_content, f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
print(e)
|
|
raise e
|
|
# test_redis_cache_acompletion_stream_bedrock()
|
|
# redis cache with custom keys
|
|
def custom_get_cache_key(*args, **kwargs):
|
|
# return key to use for your cache:
|
|
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
|
|
return key
|
|
|
|
def test_custom_redis_cache_with_key():
|
|
messages = [{"role": "user", "content": "write a one line story"}]
|
|
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
litellm.cache.get_cache_key = custom_get_cache_key
|
|
|
|
local_cache = {}
|
|
|
|
def set_cache(key, value):
|
|
local_cache[key] = value
|
|
|
|
def get_cache(key):
|
|
if key in local_cache:
|
|
return local_cache[key]
|
|
|
|
litellm.cache.cache.set_cache = set_cache
|
|
litellm.cache.cache.get_cache = get_cache
|
|
|
|
# patch this redis cache get and set call
|
|
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True, num_retries=3)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True, num_retries=3)
|
|
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=False, num_retries=3)
|
|
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
|
|
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
|
|
pytest.fail(f"Error occurred:")
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
|
|
# test_custom_redis_cache_with_key()
|
|
|
|
def test_cache_override():
|
|
# test if we can override the cache, when `caching=False` but litellm.cache = Cache() is set
|
|
# in this case it should not return cached responses
|
|
litellm.cache = Cache()
|
|
print("Testing cache override")
|
|
litellm.set_verbose=True
|
|
|
|
# test embedding
|
|
response1 = embedding(
|
|
model = "text-embedding-ada-002",
|
|
input=[
|
|
"hello who are you"
|
|
],
|
|
caching = False
|
|
)
|
|
|
|
|
|
start_time = time.time()
|
|
|
|
response2 = embedding(
|
|
model = "text-embedding-ada-002",
|
|
input=[
|
|
"hello who are you"
|
|
],
|
|
caching = False
|
|
)
|
|
|
|
end_time = time.time()
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
assert end_time - start_time > 0.1 # ensure 2nd response comes in over 0.1s. This should not be cached.
|
|
# test_cache_override()
|
|
|
|
|
|
def test_custom_redis_cache_params():
|
|
# test if we can init redis with **kwargs
|
|
try:
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ['REDIS_HOST'],
|
|
port=os.environ['REDIS_PORT'],
|
|
password=os.environ['REDIS_PASSWORD'],
|
|
db = 0,
|
|
ssl=True,
|
|
ssl_certfile="./redis_user.crt",
|
|
ssl_keyfile="./redis_user_private.key",
|
|
ssl_ca_certs="./redis_ca.pem",
|
|
)
|
|
|
|
print(litellm.cache.cache.redis_client)
|
|
litellm.cache = None
|
|
litellm.success_callback = []
|
|
litellm._async_success_callback = []
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred:", e)
|
|
|
|
|
|
def test_get_cache_key():
|
|
from litellm.caching import Cache
|
|
try:
|
|
print("Testing get_cache_key")
|
|
cache_instance = Cache()
|
|
cache_key = cache_instance.get_cache_key(**{'model': 'gpt-3.5-turbo', 'messages': [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}], 'max_tokens': 40, 'temperature': 0.2, 'stream': True, 'litellm_call_id': 'ffe75e7e-8a07-431f-9a74-71a5b9f35f0b', 'litellm_logging_obj': {}}
|
|
)
|
|
cache_key_2 = cache_instance.get_cache_key(**{'model': 'gpt-3.5-turbo', 'messages': [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}], 'max_tokens': 40, 'temperature': 0.2, 'stream': True, 'litellm_call_id': 'ffe75e7e-8a07-431f-9a74-71a5b9f35f0b', 'litellm_logging_obj': {}}
|
|
)
|
|
assert cache_key == "model: gpt-3.5-turbomessages: [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}]temperature: 0.2max_tokens: 40"
|
|
assert cache_key == cache_key_2, f"{cache_key} != {cache_key_2}. The same kwargs should have the same cache key across runs"
|
|
|
|
embedding_cache_key = cache_instance.get_cache_key(
|
|
**{'model': 'azure/azure-embedding-model', 'api_base': 'https://openai-gpt-4-test-v-1.openai.azure.com/',
|
|
'api_key': '', 'api_version': '2023-07-01-preview',
|
|
'timeout': None, 'max_retries': 0, 'input': ['hi who is ishaan'],
|
|
'caching': True,
|
|
'client': "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>"
|
|
}
|
|
)
|
|
|
|
print(embedding_cache_key)
|
|
|
|
assert embedding_cache_key == "model: azure/azure-embedding-modelinput: ['hi who is ishaan']", f"{embedding_cache_key} != 'model: azure/azure-embedding-modelinput: ['hi who is ishaan']'. The same kwargs should have the same cache key across runs"
|
|
|
|
# Proxy - embedding cache, test if embedding key, gets model_group and not model
|
|
embedding_cache_key_2 = cache_instance.get_cache_key(
|
|
**{'model': 'azure/azure-embedding-model', 'api_base': 'https://openai-gpt-4-test-v-1.openai.azure.com/',
|
|
'api_key': '', 'api_version': '2023-07-01-preview',
|
|
'timeout': None, 'max_retries': 0, 'input': ['hi who is ishaan'],
|
|
'caching': True,
|
|
'client': "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
|
|
'proxy_server_request': {'url': 'http://0.0.0.0:8000/embeddings',
|
|
'method': 'POST',
|
|
'headers':
|
|
{'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'content-type': 'application/json',
|
|
'content-length': '80'},
|
|
'body': {'model': 'azure-embedding-model', 'input': ['hi who is ishaan']}},
|
|
'user': None,
|
|
'metadata': {'user_api_key': None,
|
|
'headers': {'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'content-type': 'application/json', 'content-length': '80'},
|
|
'model_group': 'EMBEDDING_MODEL_GROUP',
|
|
'deployment': 'azure/azure-embedding-model-ModelID-azure/azure-embedding-modelhttps://openai-gpt-4-test-v-1.openai.azure.com/2023-07-01-preview'},
|
|
'model_info': {'mode': 'embedding', 'base_model': 'text-embedding-ada-002', 'id': '20b2b515-f151-4dd5-a74f-2231e2f54e29'},
|
|
'litellm_call_id': '2642e009-b3cd-443d-b5dd-bb7d56123b0e', 'litellm_logging_obj': '<litellm.utils.Logging object at 0x12f1bddb0>'}
|
|
)
|
|
|
|
print(embedding_cache_key_2)
|
|
assert embedding_cache_key_2 == "model: EMBEDDING_MODEL_GROUPinput: ['hi who is ishaan']"
|
|
print("passed!")
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
pytest.fail(f"Error occurred:", e)
|
|
|
|
test_get_cache_key()
|
|
|
|
# test_custom_redis_cache_params()
|
|
|
|
# def test_redis_cache_with_ttl():
|
|
# cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
# sample_model_response_object_str = """{
|
|
# "choices": [
|
|
# {
|
|
# "finish_reason": "stop",
|
|
# "index": 0,
|
|
# "message": {
|
|
# "role": "assistant",
|
|
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
|
|
# }
|
|
# }
|
|
# ],
|
|
# "created": 1691429984.3852863,
|
|
# "model": "claude-instant-1",
|
|
# "usage": {
|
|
# "prompt_tokens": 18,
|
|
# "completion_tokens": 23,
|
|
# "total_tokens": 41
|
|
# }
|
|
# }"""
|
|
# sample_model_response_object = {
|
|
# "choices": [
|
|
# {
|
|
# "finish_reason": "stop",
|
|
# "index": 0,
|
|
# "message": {
|
|
# "role": "assistant",
|
|
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
|
|
# }
|
|
# }
|
|
# ],
|
|
# "created": 1691429984.3852863,
|
|
# "model": "claude-instant-1",
|
|
# "usage": {
|
|
# "prompt_tokens": 18,
|
|
# "completion_tokens": 23,
|
|
# "total_tokens": 41
|
|
# }
|
|
# }
|
|
# cache.add_cache(cache_key="test_key", result=sample_model_response_object_str, ttl=1)
|
|
# cached_value = cache.get_cache(cache_key="test_key")
|
|
# print(f"cached-value: {cached_value}")
|
|
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
|
|
# time.sleep(2)
|
|
# assert cache.get_cache(cache_key="test_key") is None
|
|
|
|
# # test_redis_cache_with_ttl()
|
|
|
|
# def test_in_memory_cache_with_ttl():
|
|
# cache = Cache(type="local")
|
|
# sample_model_response_object_str = """{
|
|
# "choices": [
|
|
# {
|
|
# "finish_reason": "stop",
|
|
# "index": 0,
|
|
# "message": {
|
|
# "role": "assistant",
|
|
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
|
|
# }
|
|
# }
|
|
# ],
|
|
# "created": 1691429984.3852863,
|
|
# "model": "claude-instant-1",
|
|
# "usage": {
|
|
# "prompt_tokens": 18,
|
|
# "completion_tokens": 23,
|
|
# "total_tokens": 41
|
|
# }
|
|
# }"""
|
|
# sample_model_response_object = {
|
|
# "choices": [
|
|
# {
|
|
# "finish_reason": "stop",
|
|
# "index": 0,
|
|
# "message": {
|
|
# "role": "assistant",
|
|
# "content": "I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
|
|
# }
|
|
# }
|
|
# ],
|
|
# "created": 1691429984.3852863,
|
|
# "model": "claude-instant-1",
|
|
# "usage": {
|
|
# "prompt_tokens": 18,
|
|
# "completion_tokens": 23,
|
|
# "total_tokens": 41
|
|
# }
|
|
# }
|
|
# cache.add_cache(cache_key="test_key", result=sample_model_response_object_str, ttl=1)
|
|
# cached_value = cache.get_cache(cache_key="test_key")
|
|
# assert cached_value['choices'][0]['message']['content'] == sample_model_response_object['choices'][0]['message']['content']
|
|
# time.sleep(2)
|
|
# assert cache.get_cache(cache_key="test_key") is None
|
|
# # test_in_memory_cache_with_ttl() |