litellm-mirror/litellm/llms/base_llm/chat/transformation.py
Krish Dholakia 47f46f92c8
Litellm dev 02 10 2025 p1 (#8438)
* fix(azure/chat/gpt_transformation.py): fix str compare to use int - ensure correct api version check is done

Resolves https://github.com/BerriAI/litellm/issues/8241#issuecomment-2647142891

* test(test_azure_openai.py): add better testing
2025-02-10 16:25:04 -08:00

352 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Common base config for all LLM providers
"""
import types
from abc import ABC, abstractmethod
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Iterator,
List,
Optional,
Type,
Union,
)
import httpx
from pydantic import BaseModel
from litellm._logging import verbose_logger
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionToolChoiceFunctionParam,
ChatCompletionToolChoiceObjectParam,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
)
from litellm.types.utils import ModelResponse
from litellm.utils import CustomStreamWrapper
from ..base_utils import (
map_developer_role_to_system_role,
type_to_response_format_param,
)
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class BaseLLMException(Exception):
def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[dict, httpx.Headers]] = None,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
self.status_code = status_code
self.message: str = message
self.headers = headers
if request:
self.request = request
else:
self.request = httpx.Request(
method="POST", url="https://docs.litellm.ai/docs"
)
if response:
self.response = response
else:
self.response = httpx.Response(
status_code=status_code, request=self.request
)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class BaseConfig(ABC):
def __init__(self):
pass
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not k.startswith("_abc")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_json_schema_from_pydantic_object(
self, response_format: Optional[Union[Type[BaseModel], dict]]
) -> Optional[dict]:
return type_to_response_format_param(response_format=response_format)
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
"""
Returns True if the model/provider should fake stream
"""
return False
def translate_developer_role_to_system_role(
self,
messages: List[AllMessageValues],
) -> List[AllMessageValues]:
"""
Translate `developer` role to `system` role for non-OpenAI providers.
Overriden by OpenAI/Azure
"""
verbose_logger.debug(
"Translating developer role to system role for non-OpenAI providers."
) # ensure user knows what's happening with their input.
return map_developer_role_to_system_role(messages=messages)
def should_retry_llm_api_inside_llm_translation_on_http_error(
self, e: httpx.HTTPStatusError, litellm_params: dict
) -> bool:
"""
Returns True if the model/provider should retry the LLM API on UnprocessableEntityError
Overriden by azure ai - where different models support different parameters
"""
return False
def transform_request_on_unprocessable_entity_error(
self, e: httpx.HTTPStatusError, request_data: dict
) -> dict:
"""
Transform the request data on UnprocessableEntityError
"""
return request_data
@property
def max_retry_on_unprocessable_entity_error(self) -> int:
"""
Returns the max retry count for UnprocessableEntityError
Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
"""
return 0
@abstractmethod
def get_supported_openai_params(self, model: str) -> list:
pass
def _add_response_format_to_tools(
self,
optional_params: dict,
value: dict,
is_response_format_supported: bool,
) -> dict:
"""
Follow similar approach to anthropic - translate to a single tool call.
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
- You usually want to provide a single tool
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
Add response format to tools
This is used to translate response_format to a tool call, for models/APIs that don't support response_format directly.
"""
json_schema: Optional[dict] = None
if "response_schema" in value:
json_schema = value["response_schema"]
elif "json_schema" in value:
json_schema = value["json_schema"]["schema"]
if json_schema and not is_response_format_supported:
_tool_choice = ChatCompletionToolChoiceObjectParam(
type="function",
function=ChatCompletionToolChoiceFunctionParam(
name=RESPONSE_FORMAT_TOOL_NAME
),
)
_tool = ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name=RESPONSE_FORMAT_TOOL_NAME, parameters=json_schema
),
)
optional_params.setdefault("tools", [])
optional_params["tools"].append(_tool)
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
else:
optional_params["response_format"] = value
return optional_params
@abstractmethod
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
pass
@abstractmethod
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
pass
def sign_request(
self,
headers: dict,
optional_params: dict,
request_data: dict,
api_base: str,
stream: Optional[bool] = None,
fake_stream: Optional[bool] = None,
) -> dict:
"""
Some providers like Bedrock require signing the request. The sign request funtion needs access to `request_data` and `complete_url`
Args:
headers: dict
optional_params: dict
request_data: dict - the request body being sent in http request
api_base: str - the complete url being sent in http request
Returns:
dict - the signed headers
Update the headers with the signed headers in this function. The return values will be sent as headers in the http request.
"""
return headers
def get_complete_url(
self,
api_base: str,
model: str,
optional_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
return api_base
@abstractmethod
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
pass
@abstractmethod
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
pass
@abstractmethod
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
pass
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
) -> Any:
pass
def get_async_custom_stream_wrapper(
self,
model: str,
custom_llm_provider: str,
logging_obj: LiteLLMLoggingObj,
api_base: str,
headers: dict,
data: dict,
messages: list,
client: Optional[AsyncHTTPHandler] = None,
) -> CustomStreamWrapper:
raise NotImplementedError
def get_sync_custom_stream_wrapper(
self,
model: str,
custom_llm_provider: str,
logging_obj: LiteLLMLoggingObj,
api_base: str,
headers: dict,
data: dict,
messages: list,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
) -> CustomStreamWrapper:
raise NotImplementedError
@property
def custom_llm_provider(self) -> Optional[str]:
return None
@property
def has_custom_stream_wrapper(self) -> bool:
return False
@property
def supports_stream_param_in_request_body(self) -> bool:
"""
Some providers like Bedrock invoke do not support the stream parameter in the request body.
By default, this is true for almost all providers.
"""
return True