mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
569 lines
20 KiB
Python
569 lines
20 KiB
Python
# What is this?
|
|
## Initial implementation of calling bedrock via httpx client (allows for async calls).
|
|
## V0 - just covers cohere command-r support
|
|
|
|
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests, copy # type: ignore
|
|
import time
|
|
from typing import Callable, Optional, List, Literal, Union, Any, TypedDict, Tuple
|
|
from litellm.utils import (
|
|
ModelResponse,
|
|
Usage,
|
|
map_finish_reason,
|
|
CustomStreamWrapper,
|
|
Message,
|
|
Choices,
|
|
get_secret,
|
|
Logging,
|
|
)
|
|
import litellm
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt, cohere_message_pt
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
from .base import BaseLLM
|
|
import httpx # type: ignore
|
|
from .bedrock import BedrockError, convert_messages_to_prompt
|
|
from litellm.types.llms.bedrock import *
|
|
|
|
|
|
class AmazonCohereChatConfig:
|
|
"""
|
|
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html
|
|
"""
|
|
|
|
documents: Optional[List[Document]] = None
|
|
search_queries_only: Optional[bool] = None
|
|
preamble: Optional[str] = None
|
|
max_tokens: Optional[int] = None
|
|
temperature: Optional[float] = None
|
|
p: Optional[float] = None
|
|
k: Optional[float] = None
|
|
prompt_truncation: Optional[str] = None
|
|
frequency_penalty: Optional[float] = None
|
|
presence_penalty: Optional[float] = None
|
|
seed: Optional[int] = None
|
|
return_prompt: Optional[bool] = None
|
|
stop_sequences: Optional[List[str]] = None
|
|
raw_prompting: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
documents: Optional[List[Document]] = None,
|
|
search_queries_only: Optional[bool] = None,
|
|
preamble: Optional[str] = None,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
p: Optional[float] = None,
|
|
k: Optional[float] = None,
|
|
prompt_truncation: Optional[str] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
return_prompt: Optional[bool] = None,
|
|
stop_sequences: Optional[str] = None,
|
|
raw_prompting: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_supported_openai_params(self) -> List[str]:
|
|
return [
|
|
"max_tokens",
|
|
"stream",
|
|
"stop",
|
|
"temperature",
|
|
"top_p",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
"seed",
|
|
"stop",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self, non_default_params: dict, optional_params: dict
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "max_tokens":
|
|
optional_params["max_tokens"] = value
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
if param == "stop":
|
|
if isinstance(value, str):
|
|
value = [value]
|
|
optional_params["stop_sequences"] = value
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["p"] = value
|
|
if param == "frequency_penalty":
|
|
optional_params["frequency_penalty"] = value
|
|
if param == "presence_penalty":
|
|
optional_params["presence_penalty"] = value
|
|
if "seed":
|
|
optional_params["seed"] = value
|
|
return optional_params
|
|
|
|
|
|
class BedrockLLM(BaseLLM):
|
|
"""
|
|
Example call
|
|
|
|
```
|
|
curl --location --request POST 'https://bedrock-runtime.{aws_region_name}.amazonaws.com/model/{bedrock_model_name}/invoke' \
|
|
--header 'Content-Type: application/json' \
|
|
--header 'Accept: application/json' \
|
|
--user "$AWS_ACCESS_KEY_ID":"$AWS_SECRET_ACCESS_KEY" \
|
|
--aws-sigv4 "aws:amz:us-east-1:bedrock" \
|
|
--data-raw '{
|
|
"prompt": "Hi",
|
|
"temperature": 0,
|
|
"p": 0.9,
|
|
"max_tokens": 4096
|
|
}'
|
|
```
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def convert_messages_to_prompt(
|
|
self, model, messages, provider, custom_prompt_dict
|
|
) -> Tuple[str, Optional[list]]:
|
|
# handle anthropic prompts and amazon titan prompts
|
|
prompt = ""
|
|
chat_history: Optional[list] = None
|
|
if provider == "anthropic" or provider == "amazon":
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(
|
|
model=model, messages=messages, custom_llm_provider="bedrock"
|
|
)
|
|
elif provider == "mistral":
|
|
prompt = prompt_factory(
|
|
model=model, messages=messages, custom_llm_provider="bedrock"
|
|
)
|
|
elif provider == "meta":
|
|
prompt = prompt_factory(
|
|
model=model, messages=messages, custom_llm_provider="bedrock"
|
|
)
|
|
elif provider == "cohere":
|
|
prompt, chat_history = cohere_message_pt(messages=messages)
|
|
else:
|
|
prompt = ""
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
return prompt, chat_history # type: ignore
|
|
|
|
def get_credentials(
|
|
self,
|
|
aws_access_key_id: Optional[str] = None,
|
|
aws_secret_access_key: Optional[str] = None,
|
|
aws_region_name: Optional[str] = None,
|
|
aws_session_name: Optional[str] = None,
|
|
aws_profile_name: Optional[str] = None,
|
|
aws_role_name: Optional[str] = None,
|
|
):
|
|
"""
|
|
Return a boto3.Credentials object
|
|
"""
|
|
import boto3
|
|
|
|
## CHECK IS 'os.environ/' passed in
|
|
params_to_check: List[Optional[str]] = [
|
|
aws_access_key_id,
|
|
aws_secret_access_key,
|
|
aws_region_name,
|
|
aws_session_name,
|
|
aws_profile_name,
|
|
aws_role_name,
|
|
]
|
|
|
|
# Iterate over parameters and update if needed
|
|
for i, param in enumerate(params_to_check):
|
|
if param and param.startswith("os.environ/"):
|
|
_v = get_secret(param)
|
|
if _v is not None and isinstance(_v, str):
|
|
params_to_check[i] = _v
|
|
# Assign updated values back to parameters
|
|
(
|
|
aws_access_key_id,
|
|
aws_secret_access_key,
|
|
aws_region_name,
|
|
aws_session_name,
|
|
aws_profile_name,
|
|
aws_role_name,
|
|
) = params_to_check
|
|
|
|
### CHECK STS ###
|
|
if aws_role_name is not None and aws_session_name is not None:
|
|
sts_client = boto3.client(
|
|
"sts",
|
|
aws_access_key_id=aws_access_key_id, # [OPTIONAL]
|
|
aws_secret_access_key=aws_secret_access_key, # [OPTIONAL]
|
|
)
|
|
|
|
sts_response = sts_client.assume_role(
|
|
RoleArn=aws_role_name, RoleSessionName=aws_session_name
|
|
)
|
|
|
|
return sts_response["Credentials"]
|
|
elif aws_profile_name is not None: ### CHECK SESSION ###
|
|
# uses auth values from AWS profile usually stored in ~/.aws/credentials
|
|
client = boto3.Session(profile_name=aws_profile_name)
|
|
|
|
return client.get_credentials()
|
|
else:
|
|
session = boto3.Session(
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
region_name=aws_region_name,
|
|
)
|
|
|
|
return session.get_credentials()
|
|
|
|
def process_response(
|
|
self,
|
|
model: str,
|
|
response: requests.Response | httpx.Response,
|
|
model_response: ModelResponse,
|
|
stream: bool,
|
|
logging_obj: Logging,
|
|
optional_params: dict,
|
|
api_key: str,
|
|
data: Union[dict, str],
|
|
messages: List,
|
|
print_verbose,
|
|
encoding,
|
|
) -> ModelResponse:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
except:
|
|
raise BedrockError(message=response.text, status_code=422)
|
|
|
|
try:
|
|
model_response.choices[0].message.content = completion_response["text"] # type: ignore
|
|
except Exception as e:
|
|
raise BedrockError(message=response.text, status_code=422)
|
|
|
|
## CALCULATING USAGE - bedrock returns usage in the headers
|
|
prompt_tokens = int(
|
|
response.headers.get(
|
|
"x-amzn-bedrock-input-token-count",
|
|
len(encoding.encode("".join(m.get("content", "") for m in messages))),
|
|
)
|
|
)
|
|
completion_tokens = int(
|
|
response.headers.get(
|
|
"x-amzn-bedrock-output-token-count",
|
|
len(
|
|
encoding.encode(
|
|
model_response.choices[0].message.content, # type: ignore
|
|
disallowed_special=(),
|
|
)
|
|
),
|
|
)
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
|
|
return model_response
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
acompletion: bool = False,
|
|
extra_headers: Optional[dict] = None,
|
|
client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None,
|
|
) -> Union[ModelResponse, CustomStreamWrapper]:
|
|
try:
|
|
import boto3
|
|
|
|
from botocore.auth import SigV4Auth
|
|
from botocore.awsrequest import AWSRequest
|
|
from botocore.credentials import Credentials
|
|
except ImportError as e:
|
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
|
|
|
## CREDENTIALS ##
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
aws_role_name = optional_params.pop("aws_role_name", None)
|
|
aws_session_name = optional_params.pop("aws_session_name", None)
|
|
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
|
aws_bedrock_runtime_endpoint = optional_params.pop(
|
|
"aws_bedrock_runtime_endpoint", None
|
|
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
|
|
|
### SET REGION NAME ###
|
|
if aws_region_name is None:
|
|
# check env #
|
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
|
|
|
if litellm_aws_region_name is not None and isinstance(
|
|
litellm_aws_region_name, str
|
|
):
|
|
aws_region_name = litellm_aws_region_name
|
|
|
|
standard_aws_region_name = get_secret("AWS_REGION", None)
|
|
if standard_aws_region_name is not None and isinstance(
|
|
standard_aws_region_name, str
|
|
):
|
|
aws_region_name = standard_aws_region_name
|
|
|
|
if aws_region_name is None:
|
|
aws_region_name = "us-west-2"
|
|
|
|
credentials: Credentials = self.get_credentials(
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
aws_region_name=aws_region_name,
|
|
aws_session_name=aws_session_name,
|
|
aws_profile_name=aws_profile_name,
|
|
aws_role_name=aws_role_name,
|
|
)
|
|
|
|
### SET RUNTIME ENDPOINT ###
|
|
endpoint_url = ""
|
|
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
|
|
if aws_bedrock_runtime_endpoint is not None and isinstance(
|
|
aws_bedrock_runtime_endpoint, str
|
|
):
|
|
endpoint_url = aws_bedrock_runtime_endpoint
|
|
elif env_aws_bedrock_runtime_endpoint and isinstance(
|
|
env_aws_bedrock_runtime_endpoint, str
|
|
):
|
|
endpoint_url = env_aws_bedrock_runtime_endpoint
|
|
else:
|
|
endpoint_url = f"https://bedrock-runtime.{aws_region_name}.amazonaws.com"
|
|
|
|
endpoint_url = f"{endpoint_url}/model/{model}/invoke"
|
|
|
|
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
|
|
|
provider = model.split(".")[0]
|
|
prompt, chat_history = self.convert_messages_to_prompt(
|
|
model, messages, provider, custom_prompt_dict
|
|
)
|
|
inference_params = copy.deepcopy(optional_params)
|
|
stream = inference_params.pop("stream", False)
|
|
|
|
if provider == "cohere":
|
|
if model.startswith("cohere.command-r"):
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonCohereChatConfig().get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
if optional_params.get("stream", False) == True:
|
|
inference_params["stream"] = (
|
|
True # cohere requires stream = True in inference params
|
|
)
|
|
|
|
_data = {"message": prompt, **inference_params}
|
|
if chat_history is not None:
|
|
_data["chat_history"] = chat_history
|
|
data = json.dumps(_data)
|
|
else:
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonCohereConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
if optional_params.get("stream", False) == True:
|
|
inference_params["stream"] = (
|
|
True # cohere requires stream = True in inference params
|
|
)
|
|
data = json.dumps({"prompt": prompt, **inference_params})
|
|
else:
|
|
raise Exception("UNSUPPORTED PROVIDER")
|
|
|
|
## COMPLETION CALL
|
|
headers = {"Content-Type": "application/json"}
|
|
if extra_headers is not None:
|
|
headers = {"Content-Type": "application/json", **extra_headers}
|
|
request = AWSRequest(
|
|
method="POST", url=endpoint_url, data=data, headers=headers
|
|
)
|
|
sigv4.add_auth(request)
|
|
prepped = request.prepare()
|
|
|
|
### ROUTING (ASYNC, STREAMING, SYNC)
|
|
if acompletion:
|
|
if isinstance(client, HTTPHandler):
|
|
client = None
|
|
|
|
### ASYNC COMPLETION
|
|
return self.async_completion(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=prepped.url,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=False,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=prepped.headers,
|
|
timeout=timeout,
|
|
client=client,
|
|
) # type: ignore
|
|
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
_params = {}
|
|
if timeout is not None:
|
|
if isinstance(timeout, float) or isinstance(timeout, int):
|
|
timeout = httpx.Timeout(timeout)
|
|
_params["timeout"] = timeout
|
|
self.client = HTTPHandler(**_params) # type: ignore
|
|
else:
|
|
self.client = client
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": prepped.url,
|
|
"headers": prepped.headers,
|
|
},
|
|
)
|
|
|
|
response = self.client.post(url=prepped.url, headers=prepped.headers, data=data) # type: ignore
|
|
|
|
try:
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError as err:
|
|
error_code = err.response.status_code
|
|
raise BedrockError(status_code=error_code, message=response.text)
|
|
|
|
return self.process_response(
|
|
model=model,
|
|
response=response,
|
|
model_response=model_response,
|
|
stream=stream,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
api_key="",
|
|
data=data,
|
|
messages=messages,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
)
|
|
|
|
async def async_completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
data: str,
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
encoding,
|
|
logging_obj,
|
|
stream,
|
|
optional_params: dict,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
) -> ModelResponse:
|
|
if client is None:
|
|
_params = {}
|
|
if timeout is not None:
|
|
if isinstance(timeout, float) or isinstance(timeout, int):
|
|
timeout = httpx.Timeout(timeout)
|
|
_params["timeout"] = timeout
|
|
self.client = AsyncHTTPHandler(**_params) # type: ignore
|
|
else:
|
|
self.client = client # type: ignore
|
|
|
|
response = await self.client.post(api_base, headers=headers, data=data) # type: ignore
|
|
return self.process_response(
|
|
model=model,
|
|
response=response,
|
|
model_response=model_response,
|
|
stream=stream,
|
|
logging_obj=logging_obj,
|
|
api_key="",
|
|
data=data,
|
|
messages=messages,
|
|
print_verbose=print_verbose,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
)
|
|
|
|
def embedding(self, *args, **kwargs):
|
|
return super().embedding(*args, **kwargs)
|