mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
274 lines
9.8 KiB
Python
274 lines
9.8 KiB
Python
import sys, os
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
import litellm
|
|
from litellm import embedding, completion
|
|
from litellm.caching import Cache
|
|
litellm.set_verbose=True
|
|
|
|
messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
|
# comment
|
|
|
|
# test if response cached
|
|
def test_caching():
|
|
try:
|
|
litellm.caching = True
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.caching = False
|
|
if response2 != response1:
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred: responses are not equal")
|
|
except Exception as e:
|
|
litellm.caching = False
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
def test_caching_with_models():
|
|
litellm.caching_with_models = True
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response3 = completion(model="command-nightly", messages=messages)
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
litellm.caching_with_models = False
|
|
if response3 == response2:
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
if response1 != response2:
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
|
|
# test_caching_with_models()
|
|
|
|
|
|
def test_gpt_cache():
|
|
# INIT GPT Cache #
|
|
from gptcache import cache
|
|
import gptcache
|
|
|
|
from gptcache.processor.pre import last_content_without_prompt
|
|
from litellm.gpt_cache import completion
|
|
from typing import Dict, Any
|
|
|
|
def pre_cache_func(data: Dict[str, Any], **params: Dict[str, Any]) -> Any:
|
|
# use this to set cache key
|
|
print("in do nothing")
|
|
last_content_without_prompt_val = last_content_without_prompt(data, **params)
|
|
print("last content without prompt", last_content_without_prompt_val)
|
|
print("model", data["model"])
|
|
cache_key = last_content_without_prompt_val + data["model"]
|
|
print("cache_key", cache_key)
|
|
return cache_key
|
|
|
|
|
|
cache.init(pre_func=pre_cache_func)
|
|
cache.set_openai_key()
|
|
|
|
messages = [{"role": "user", "content": "why should I use LiteLLM today"}]
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response3 = completion(model="command-nightly", messages=messages)
|
|
|
|
if response1["choices"] != response2["choices"]: # same models should cache
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
if response3["choices"] == response2["choices"]: # different models, don't cache
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
|
|
# test_gpt_cache()
|
|
|
|
|
|
####### Updated Caching as of Aug 28, 2023 ###################
|
|
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
|
def test_caching_v2():
|
|
try:
|
|
litellm.cache = Cache()
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
litellm.cache = None # disable cache
|
|
if response2 != response1:
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
except Exception as e:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_caching()
|
|
|
|
|
|
def test_caching_with_models_v2():
|
|
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
|
|
litellm.cache = Cache()
|
|
print("test2 for caching")
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response3 = completion(model="command-nightly", messages=messages)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
litellm.cache = None
|
|
if response3 == response2:
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
if response1 != response2:
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
|
|
embedding_large_text = """
|
|
small text
|
|
""" * 5
|
|
|
|
# # test_caching_with_models()
|
|
def test_embedding_caching():
|
|
import time
|
|
litellm.cache = Cache()
|
|
text_to_embed = [embedding_large_text]
|
|
start_time = time.time()
|
|
embedding1 = embedding(model="text-embedding-ada-002", input=text_to_embed)
|
|
end_time = time.time()
|
|
print(f"Embedding 1 response time: {end_time - start_time} seconds")
|
|
|
|
time.sleep(1)
|
|
start_time = time.time()
|
|
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed)
|
|
end_time = time.time()
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
litellm.cache = None
|
|
if embedding2 != embedding1:
|
|
print(f"embedding1: {embedding1}")
|
|
print(f"embedding2: {embedding2}")
|
|
pytest.fail("Error occurred: Embedding caching failed")
|
|
|
|
# test_embedding_caching()
|
|
|
|
|
|
# test caching with streaming
|
|
# flaky test on circle ci for some reason?
|
|
# def test_caching_v2_stream_basic():
|
|
# try:
|
|
# litellm.cache = Cache()
|
|
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
|
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
|
|
|
# result_string = ""
|
|
# for chunk in response1:
|
|
# print(chunk)
|
|
# result_string+=chunk['choices'][0]['delta']['content']
|
|
# # response1_id = chunk['id']
|
|
|
|
# print("current cache")
|
|
# print(litellm.cache.cache.cache_dict)
|
|
|
|
# result2_string=""
|
|
# import time
|
|
# time.sleep(1)
|
|
# response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
|
# for chunk in response2:
|
|
# print(chunk)
|
|
# result2_string+=chunk['choices'][0]['delta']['content']
|
|
# if result_string != result2_string:
|
|
# print(result_string)
|
|
# print(result2_string)
|
|
# pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
|
|
# litellm.cache = None
|
|
|
|
# except Exception as e:
|
|
# print(f"error occurred: {traceback.format_exc()}")
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_caching_v2_stream_basic()
|
|
|
|
# def test_caching_v2_stream():
|
|
# try:
|
|
# litellm.cache = Cache()
|
|
# # litellm.token="ishaan@berri.ai"
|
|
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
|
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
|
|
|
# messages = [{"role": "user", "content": "tell me a chair"}]
|
|
# response7 = completion(model="command-nightly", messages=messages)
|
|
# messages = [{"role": "user", "content": "sing a song"}]
|
|
# response8 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
|
|
|
# result_string = ""
|
|
# for chunk in response1:
|
|
# print(chunk)
|
|
# result_string+=chunk['choices'][0]['delta']['content']
|
|
# # response1_id = chunk['id']
|
|
|
|
# print("current cache")
|
|
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
|
# print(litellm.cache.cache.cache_dict)
|
|
|
|
# result2_string=""
|
|
# response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
|
# for chunk in response2:
|
|
# print(chunk)
|
|
# result2_string+=chunk['choices'][0]['delta']['content']
|
|
# if result_string != result2_string:
|
|
# print(result_string)
|
|
# print(result2_string)
|
|
# pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
|
|
# litellm.cache = None
|
|
|
|
# except Exception as e:
|
|
# print(f"error occurred: {traceback.format_exc()}")
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_caching_v2_stream()
|
|
|
|
|
|
def test_redis_cache_completion():
|
|
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
|
|
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
|
print("test2 for caching")
|
|
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
|
response3 = completion(model="command-nightly", messages=messages)
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
litellm.cache = None
|
|
if response3 == response2:
|
|
# if models are different, it should not return cached response
|
|
print(f"response2: {response2}")
|
|
print(f"response3: {response3}")
|
|
pytest.fail(f"Error occurred:")
|
|
if response1 != response2: # 1 and 2 should be the same
|
|
print(f"response1: {response1}")
|
|
print(f"response2: {response2}")
|
|
pytest.fail(f"Error occurred:")
|
|
|
|
# test_redis_cache_completion()
|
|
|
|
|
|
|