mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
106 lines
No EOL
4.2 KiB
Python
106 lines
No EOL
4.2 KiB
Python
import sys, os
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os, io
|
|
|
|
# this file is to test litellm/proxy
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
import litellm
|
|
from litellm import embedding, completion, completion_cost, Timeout
|
|
from litellm import RateLimitError
|
|
import importlib, inspect
|
|
|
|
# test /chat/completion request to the proxy
|
|
from fastapi.testclient import TestClient
|
|
from fastapi import FastAPI
|
|
from litellm.proxy.proxy_server import router, save_worker_config, initialize # Replace with the actual module where your FastAPI router is defined
|
|
filepath = os.path.dirname(os.path.abspath(__file__))
|
|
config_fp = f"{filepath}/test_configs/test_custom_logger.yaml"
|
|
python_file_path = f"{filepath}/test_configs/custom_callbacks.py"
|
|
save_worker_config(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
|
|
app = FastAPI()
|
|
app.include_router(router) # Include your router in the test app
|
|
@app.on_event("startup")
|
|
async def wrapper_startup_event():
|
|
initialize(config=config_fp, model=None, alias=None, api_base=None, api_version=None, debug=True, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=False, headers=None, save=False, use_queue=False)
|
|
|
|
# Here you create a fixture that will be used by your tests
|
|
# Make sure the fixture returns TestClient(app)
|
|
@pytest.fixture(autouse=True)
|
|
def client():
|
|
with TestClient(app) as client:
|
|
yield client
|
|
|
|
# Your bearer token
|
|
token = os.getenv("PROXY_MASTER_KEY")
|
|
|
|
headers = {
|
|
"Authorization": f"Bearer {token}"
|
|
}
|
|
|
|
|
|
def test_chat_completion(client):
|
|
try:
|
|
# Your test data
|
|
print("initialized proxy")
|
|
# import the initialized custom logger
|
|
print(litellm.callbacks)
|
|
|
|
assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
|
|
my_custom_logger = litellm.callbacks[0]
|
|
assert my_custom_logger.async_success == False
|
|
|
|
test_data = {
|
|
"model": "Azure OpenAI GPT-4 Canada",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "hi"
|
|
},
|
|
],
|
|
"max_tokens": 10,
|
|
}
|
|
|
|
|
|
response = client.post("/chat/completions", json=test_data, headers=headers)
|
|
print("made request", response.status_code, response.text)
|
|
assert my_custom_logger.async_success == True # checks if the status of async_success is True, only the async_log_success_event can set this to true
|
|
assert my_custom_logger.async_completion_kwargs["model"] == "chatgpt-v-2" # checks if kwargs passed to async_log_success_event are correct
|
|
|
|
result = response.json()
|
|
print(f"Received response: {result}")
|
|
except Exception as e:
|
|
pytest.fail("LiteLLM Proxy test failed. Exception", e)
|
|
|
|
|
|
|
|
def test_embedding(client):
|
|
try:
|
|
# Your test data
|
|
print("initialized proxy")
|
|
# import the initialized custom logger
|
|
print(litellm.callbacks)
|
|
|
|
assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
|
|
my_custom_logger = litellm.callbacks[0]
|
|
assert my_custom_logger.async_success_embedding == False
|
|
|
|
test_data = {
|
|
"model": "azure-embedding-model",
|
|
"input": ["hello"]
|
|
}
|
|
response = client.post("/embeddings", json=test_data, headers=headers)
|
|
print("made request", response.status_code, response.text)
|
|
assert my_custom_logger.async_success_embedding == True # checks if the status of async_success is True, only the async_log_success_event can set this to true
|
|
assert my_custom_logger.async_embedding_kwargs["model"] == "azure-embedding-model" # checks if kwargs passed to async_log_success_event are correct
|
|
|
|
result = response.json()
|
|
print(f"Received response: {result}")
|
|
except Exception as e:
|
|
pytest.fail("LiteLLM Proxy test failed. Exception", e) |