litellm-mirror/litellm/proxy/guardrails/guardrail_hooks/aporia_ai.py
Ishaan Jaff 4d1b4beb3d
(refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208)
* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered
2024-10-14 16:34:01 +05:30

218 lines
7.1 KiB
Python

# +-------------------------------------------------------------+
#
# Use AporiaAI for your LLM calls
#
# +-------------------------------------------------------------+
# Thank you users! We ❤️ you! - Krrish & Ishaan
import os
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import asyncio
import json
import sys
import traceback
import uuid
from datetime import datetime
from typing import Any, List, Literal, Optional, Union
import aiohttp
import httpx
from fastapi import HTTPException
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_guardrail import CustomGuardrail
from litellm.litellm_core_utils.logging_utils import (
convert_litellm_response_object_to_str,
)
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata
from litellm.types.guardrails import GuardrailEventHooks
litellm.set_verbose = True
GUARDRAIL_NAME = "aporia"
class AporiaGuardrail(CustomGuardrail):
def __init__(
self, api_key: Optional[str] = None, api_base: Optional[str] = None, **kwargs
):
self.async_handler = get_async_httpx_client(
llm_provider=httpxSpecialProvider.GuardrailCallback
)
self.aporia_api_key = api_key or os.environ["APORIO_API_KEY"]
self.aporia_api_base = api_base or os.environ["APORIO_API_BASE"]
super().__init__(**kwargs)
#### CALL HOOKS - proxy only ####
def transform_messages(self, messages: List[dict]) -> List[dict]:
supported_openai_roles = ["system", "user", "assistant"]
default_role = "other" # for unsupported roles - e.g. tool
new_messages = []
for m in messages:
if m.get("role", "") in supported_openai_roles:
new_messages.append(m)
else:
new_messages.append(
{
"role": default_role,
**{key: value for key, value in m.items() if key != "role"},
}
)
return new_messages
async def prepare_aporia_request(
self, new_messages: List[dict], response_string: Optional[str] = None
) -> dict:
data: dict[str, Any] = {}
if new_messages is not None:
data["messages"] = new_messages
if response_string is not None:
data["response"] = response_string
# Set validation target
if new_messages and response_string:
data["validation_target"] = "both"
elif new_messages:
data["validation_target"] = "prompt"
elif response_string:
data["validation_target"] = "response"
verbose_proxy_logger.debug("Aporia AI request: %s", data)
return data
async def make_aporia_api_request(
self, new_messages: List[dict], response_string: Optional[str] = None
):
data = await self.prepare_aporia_request(
new_messages=new_messages, response_string=response_string
)
_json_data = json.dumps(data)
"""
export APORIO_API_KEY=<your key>
curl https://gr-prd-trial.aporia.com/some-id \
-X POST \
-H "X-APORIA-API-KEY: $APORIO_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"content": "This is a test prompt"
}
],
}
'
"""
response = await self.async_handler.post(
url=self.aporia_api_base + "/validate",
data=_json_data,
headers={
"X-APORIA-API-KEY": self.aporia_api_key,
"Content-Type": "application/json",
},
)
verbose_proxy_logger.debug("Aporia AI response: %s", response.text)
if response.status_code == 200:
# check if the response was flagged
_json_response = response.json()
action: str = _json_response.get(
"action"
) # possible values are modify, passthrough, block, rephrase
if action == "block":
raise HTTPException(
status_code=400,
detail={
"error": "Violated guardrail policy",
"aporia_ai_response": _json_response,
},
)
async def async_post_call_success_hook(
self,
data: dict,
user_api_key_dict: UserAPIKeyAuth,
response,
):
from litellm.proxy.common_utils.callback_utils import (
add_guardrail_to_applied_guardrails_header,
)
"""
Use this for the post call moderation with Guardrails
"""
event_type: GuardrailEventHooks = GuardrailEventHooks.post_call
if self.should_run_guardrail(data=data, event_type=event_type) is not True:
return
response_str: Optional[str] = convert_litellm_response_object_to_str(response)
if response_str is not None:
await self.make_aporia_api_request(
response_string=response_str, new_messages=data.get("messages", [])
)
add_guardrail_to_applied_guardrails_header(
request_data=data, guardrail_name=self.guardrail_name
)
pass
async def async_moderation_hook( ### 👈 KEY CHANGE ###
self,
data: dict,
user_api_key_dict: UserAPIKeyAuth,
call_type: Literal[
"completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
],
):
from litellm.proxy.common_utils.callback_utils import (
add_guardrail_to_applied_guardrails_header,
)
event_type: GuardrailEventHooks = GuardrailEventHooks.during_call
if self.should_run_guardrail(data=data, event_type=event_type) is not True:
return
# old implementation - backwards compatibility
if (
await should_proceed_based_on_metadata(
data=data,
guardrail_name=GUARDRAIL_NAME,
)
is False
):
return
new_messages: Optional[List[dict]] = None
if "messages" in data and isinstance(data["messages"], list):
new_messages = self.transform_messages(messages=data["messages"])
if new_messages is not None:
await self.make_aporia_api_request(new_messages=new_messages)
add_guardrail_to_applied_guardrails_header(
request_data=data, guardrail_name=self.guardrail_name
)
else:
verbose_proxy_logger.warning(
"Aporia AI: not running guardrail. No messages in data"
)
pass