litellm-mirror/litellm/llms/anthropic.py

177 lines
6 KiB
Python

import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
import httpx
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
class AnthropicError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://api.anthropic.com/v1/complete")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AnthropicConfig():
"""
Reference: https://docs.anthropic.com/claude/reference/complete_post
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
"""
max_tokens_to_sample: Optional[int]=litellm.max_tokens # anthropic requires a default
stop_sequences: Optional[list]=None
temperature: Optional[int]=None
top_p: Optional[int]=None
top_k: Optional[int]=None
metadata: Optional[dict]=None
def __init__(self,
max_tokens_to_sample: Optional[int]=256, # anthropic requires a default
stop_sequences: Optional[list]=None,
temperature: Optional[int]=None,
top_p: Optional[int]=None,
top_k: Optional[int]=None,
metadata: Optional[dict]=None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
# makes headers for API call
def validate_environment(api_key):
if api_key is None:
raise ValueError(
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"anthropic-version": "2023-06-01",
"content-type": "application/json",
"x-api-key": api_key,
}
return headers
def completion(
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:
prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="anthropic")
## Load Config
config = litellm.AnthropicConfig.get_config()
for k, v in config.items():
if k not in optional_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
data = {
"model": model,
"prompt": prompt,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post(
api_base,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"],
)
return response.iter_lines()
else:
response = requests.post(
api_base, headers=headers, data=json.dumps(data)
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise AnthropicError(
message=response.text, status_code=response.status_code
)
if "error" in completion_response:
raise AnthropicError(
message=str(completion_response["error"]),
status_code=response.status_code,
)
else:
if len(completion_response["completion"]) > 0:
model_response["choices"][0]["message"]["content"] = completion_response[
"completion"
]
model_response.choices[0].finish_reason = completion_response["stop_reason"]
## CALCULATING USAGE
prompt_tokens = len(
encoding.encode(prompt)
) ##[TODO] use the anthropic tokenizer here
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
) ##[TODO] use the anthropic tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response.usage.completion_tokens = completion_tokens
model_response.usage.prompt_tokens = prompt_tokens
model_response.usage.total_tokens = prompt_tokens + completion_tokens
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass