litellm-mirror/litellm/llms/diffusers/fine_tuning/handler.py
2025-04-04 23:51:51 -04:00

211 lines
6.5 KiB
Python

from typing import Any, Coroutine, Optional, Union, Dict, List
import logging
try:
from dataclasses import dataclass
import torch
from diffusers import UNet2DConditionModel
from diffusers.optimization import get_scheduler
from transformers import CLIPTextModel, CLIPTokenizer
except:
pass
verbose_logger = logging.getLogger(__name__)
@dataclass
class FineTuningJob:
id: str
status: str
model: str
created_at: int
hyperparameters: Dict[str, Any]
result_files: List[str]
class DiffusersFineTuningAPI:
"""
Diffusers implementation for fine-tuning stable diffusion models locally
"""
def __init__(self) -> None:
self.jobs: Dict[str, FineTuningJob] = {}
super().__init__()
async def _train_diffusers_model(
self,
training_data: str,
base_model: str = "stabilityai/stable-diffusion-2",
output_dir: str = "./fine_tuned_model",
learning_rate: float = 5e-6,
train_batch_size: int = 1,
max_train_steps: int = 500,
gradient_accumulation_steps: int = 1,
mixed_precision: str = "fp16",
) -> FineTuningJob:
"""Actual training implementation for diffusers"""
job_id = f"ftjob_{len(self.jobs)+1}"
job = FineTuningJob(
id=job_id,
status="running",
model=base_model,
created_at=int(time.time()),
hyperparameters={
"learning_rate": learning_rate,
"batch_size": train_batch_size,
"steps": max_train_steps,
},
result_files=[output_dir],
)
self.jobs[job_id] = job
try:
# Load models and create pipeline
tokenizer = CLIPTokenizer.from_pretrained(base_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(
base_model, subfolder="text_encoder"
)
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet")
# Optimizer and scheduler
optimizer = torch.optim.AdamW(
unet.parameters(),
lr=learning_rate,
)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=max_train_steps,
)
# Training loop would go here
# This is simplified - actual implementation would need:
# 1. Data loading from training_data path
# 2. Proper training loop with forward/backward passes
# 3. Saving checkpoints
# Simulate training
for step in range(max_train_steps):
if step % 10 == 0:
verbose_logger.debug(f"Training step {step}/{max_train_steps}")
# Save the trained model
unet.save_pretrained(f"{output_dir}/unet")
text_encoder.save_pretrained(f"{output_dir}/text_encoder")
job.status = "succeeded"
return job
except Exception as e:
job.status = "failed"
verbose_logger.error(f"Training failed: {str(e)}")
raise
async def acreate_fine_tuning_job(
self,
create_fine_tuning_job_data: dict,
) -> FineTuningJob:
"""Create a fine-tuning job asynchronously"""
return await self._train_diffusers_model(**create_fine_tuning_job_data)
def create_fine_tuning_job(
self,
_is_async: bool,
create_fine_tuning_job_data: dict,
**kwargs,
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
"""Create a fine-tuning job (sync or async)"""
if _is_async:
return self.acreate_fine_tuning_job(create_fine_tuning_job_data)
else:
# Run async code synchronously
import asyncio
return asyncio.run(
self.acreate_fine_tuning_job(create_fine_tuning_job_data)
)
async def alist_fine_tuning_jobs(
self,
after: Optional[str] = None,
limit: Optional[int] = None,
):
"""List fine-tuning jobs asynchronously"""
jobs = list(self.jobs.values())
if after:
jobs = [j for j in jobs if j.id > after]
if limit:
jobs = jobs[:limit]
return {"data": jobs}
def list_fine_tuning_jobs(
self,
_is_async: bool,
after: Optional[str] = None,
limit: Optional[int] = None,
**kwargs,
):
"""List fine-tuning jobs (sync or async)"""
if _is_async:
return self.alist_fine_tuning_jobs(after=after, limit=limit)
else:
# Run async code synchronously
import asyncio
return asyncio.run(self.alist_fine_tuning_jobs(after=after, limit=limit))
async def aretrieve_fine_tuning_job(
self,
fine_tuning_job_id: str,
) -> FineTuningJob:
"""Retrieve a fine-tuning job asynchronously"""
if fine_tuning_job_id not in self.jobs:
raise ValueError(f"Job {fine_tuning_job_id} not found")
return self.jobs[fine_tuning_job_id]
def retrieve_fine_tuning_job(
self,
_is_async: bool,
fine_tuning_job_id: str,
**kwargs,
):
"""Retrieve a fine-tuning job (sync or async)"""
if _is_async:
return self.aretrieve_fine_tuning_job(fine_tuning_job_id)
else:
# Run async code synchronously
import asyncio
return asyncio.run(self.aretrieve_fine_tuning_job(fine_tuning_job_id))
async def acancel_fine_tuning_job(
self,
fine_tuning_job_id: str,
) -> FineTuningJob:
"""Cancel a fine-tuning job asynchronously"""
if fine_tuning_job_id not in self.jobs:
raise ValueError(f"Job {fine_tuning_job_id} not found")
job = self.jobs[fine_tuning_job_id]
if job.status in ["succeeded", "failed", "cancelled"]:
raise ValueError(f"Cannot cancel job in status {job.status}")
job.status = "cancelled"
return job
def cancel_fine_tuning_job(
self,
_is_async: bool,
fine_tuning_job_id: str,
**kwargs,
):
"""Cancel a fine-tuning job (sync or async)"""
if _is_async:
return self.acancel_fine_tuning_job(fine_tuning_job_id)
else:
# Run async code synchronously
import asyncio
return asyncio.run(self.acancel_fine_tuning_job(fine_tuning_job_id))