litellm-mirror/litellm/llms/azure/chat/gpt_transformation.py
Krish Dholakia 516c2a6a70
Litellm remove circular imports (#7232)
* fix(utils.py): initial commit to remove circular imports - moves llmproviders to utils.py

* fix(router.py): fix 'litellm.EmbeddingResponse' import from router.py

'

* refactor: fix litellm.ModelResponse import on pass through endpoints

* refactor(litellm_logging.py): fix circular import for custom callbacks literal

* fix(factory.py): fix circular imports inside prompt factory

* fix(cost_calculator.py): fix circular import for 'litellm.Usage'

* fix(proxy_server.py): fix potential circular import with `litellm.Router'

* fix(proxy/utils.py): fix potential circular import in `litellm.Router`

* fix: remove circular imports in 'auth_checks' and 'guardrails/'

* fix(prompt_injection_detection.py): fix router impor t

* fix(vertex_passthrough_logging_handler.py): fix potential circular imports in vertex pass through

* fix(anthropic_pass_through_logging_handler.py): fix potential circular imports

* fix(slack_alerting.py-+-ollama_chat.py): fix modelresponse import

* fix(base.py): fix potential circular import

* fix(handler.py): fix potential circular ref in codestral + cohere handler's

* fix(azure.py): fix potential circular imports

* fix(gpt_transformation.py): fix modelresponse import

* fix(litellm_logging.py): add logging base class - simplify typing

makes it easy for other files to type check the logging obj without introducing circular imports

* fix(azure_ai/embed): fix potential circular import on handler.py

* fix(databricks/): fix potential circular imports in databricks/

* fix(vertex_ai/): fix potential circular imports on vertex ai embeddings

* fix(vertex_ai/image_gen): fix import

* fix(watsonx-+-bedrock): cleanup imports

* refactor(anthropic-pass-through-+-petals): cleanup imports

* refactor(huggingface/): cleanup imports

* fix(ollama-+-clarifai): cleanup circular imports

* fix(openai_like/): fix impor t

* fix(openai_like/): fix embedding handler

cleanup imports

* refactor(openai.py): cleanup imports

* fix(sagemaker/transformation.py): fix import

* ci(config.yml): add circular import test to ci/cd
2024-12-14 16:28:34 -08:00

290 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import types
from typing import TYPE_CHECKING, Any, List, Optional, Type, Union
from httpx._models import Headers, Response
import litellm
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_to_azure_openai_messages,
)
from litellm.llms.base_llm.transformation import BaseLLMException
from litellm.types.utils import ModelResponse
from ....exceptions import UnsupportedParamsError
from ....types.llms.openai import (
AllMessageValues,
ChatCompletionToolChoiceFunctionParam,
ChatCompletionToolChoiceObjectParam,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
)
from ...base_llm.transformation import BaseConfig
from ..common_utils import AzureOpenAIError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
class AzureOpenAIConfig(BaseConfig):
"""
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str) -> List[str]:
return [
"temperature",
"n",
"stream",
"stream_options",
"stop",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"function_call",
"functions",
"tools",
"tool_choice",
"top_p",
"logprobs",
"top_logprobs",
"response_format",
"seed",
"extra_headers",
"parallel_tool_calls",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
api_version: str = "",
) -> dict:
supported_openai_params = self.get_supported_openai_params(model)
api_version_times = api_version.split("-")
api_version_year = api_version_times[0]
api_version_month = api_version_times[1]
api_version_day = api_version_times[2]
for param, value in non_default_params.items():
if param == "tool_choice":
"""
This parameter requires API version 2023-12-01-preview or later
tool_choice='required' is not supported as of 2024-05-01-preview
"""
## check if api version supports this param ##
if (
api_version_year < "2023"
or (api_version_year == "2023" and api_version_month < "12")
or (
api_version_year == "2023"
and api_version_month == "12"
and api_version_day < "01"
)
):
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
)
elif value == "required" and (
api_version_year == "2024" and api_version_month <= "05"
): ## check if tool_choice value is supported ##
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
)
else:
optional_params["tool_choice"] = value
elif param == "response_format" and isinstance(value, dict):
json_schema: Optional[dict] = None
schema_name: str = ""
if "response_schema" in value:
json_schema = value["response_schema"]
schema_name = "json_tool_call"
elif "json_schema" in value:
json_schema = value["json_schema"]["schema"]
schema_name = value["json_schema"]["name"]
"""
Follow similar approach to anthropic - translate to a single tool call.
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
- You usually want to provide a single tool
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
"""
if json_schema is not None and (
(api_version_year <= "2024" and api_version_month < "08")
or "gpt-4o" not in model
): # azure api version "2024-08-01-preview" onwards supports 'json_schema' only for gpt-4o
_tool_choice = ChatCompletionToolChoiceObjectParam(
type="function",
function=ChatCompletionToolChoiceFunctionParam(
name=schema_name
),
)
_tool = ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name=schema_name, parameters=json_schema
),
)
optional_params["tools"] = [_tool]
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
else:
optional_params["response_format"] = value
elif param in supported_openai_params:
optional_params[param] = value
return optional_params
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
messages = convert_to_azure_openai_messages(messages)
return {
"model": model,
"messages": messages,
**optional_params,
}
def transform_response(
self,
model: str,
raw_response: Response,
model_response: ModelResponse,
logging_obj: LoggingClass,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
raise NotImplementedError(
"Azure OpenAI handler.py has custom logic for transforming response, as it uses the OpenAI SDK."
)
def get_mapped_special_auth_params(self) -> dict:
return {"token": "azure_ad_token"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "token":
optional_params["azure_ad_token"] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return ["europe", "sweden", "switzerland", "france", "uk"]
def get_us_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return [
"us",
"eastus",
"eastus2",
"eastus2euap",
"eastus3",
"southcentralus",
"westus",
"westus2",
"westus3",
"westus4",
]
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return AzureOpenAIError(
message=error_message, status_code=status_code, headers=headers
)
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
) -> dict:
raise NotImplementedError(
"Azure OpenAI has custom logic for validating environment, as it uses the OpenAI SDK."
)