mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* fix(utils.py): initial commit to remove circular imports - moves llmproviders to utils.py * fix(router.py): fix 'litellm.EmbeddingResponse' import from router.py ' * refactor: fix litellm.ModelResponse import on pass through endpoints * refactor(litellm_logging.py): fix circular import for custom callbacks literal * fix(factory.py): fix circular imports inside prompt factory * fix(cost_calculator.py): fix circular import for 'litellm.Usage' * fix(proxy_server.py): fix potential circular import with `litellm.Router' * fix(proxy/utils.py): fix potential circular import in `litellm.Router` * fix: remove circular imports in 'auth_checks' and 'guardrails/' * fix(prompt_injection_detection.py): fix router impor t * fix(vertex_passthrough_logging_handler.py): fix potential circular imports in vertex pass through * fix(anthropic_pass_through_logging_handler.py): fix potential circular imports * fix(slack_alerting.py-+-ollama_chat.py): fix modelresponse import * fix(base.py): fix potential circular import * fix(handler.py): fix potential circular ref in codestral + cohere handler's * fix(azure.py): fix potential circular imports * fix(gpt_transformation.py): fix modelresponse import * fix(litellm_logging.py): add logging base class - simplify typing makes it easy for other files to type check the logging obj without introducing circular imports * fix(azure_ai/embed): fix potential circular import on handler.py * fix(databricks/): fix potential circular imports in databricks/ * fix(vertex_ai/): fix potential circular imports on vertex ai embeddings * fix(vertex_ai/image_gen): fix import * fix(watsonx-+-bedrock): cleanup imports * refactor(anthropic-pass-through-+-petals): cleanup imports * refactor(huggingface/): cleanup imports * fix(ollama-+-clarifai): cleanup circular imports * fix(openai_like/): fix impor t * fix(openai_like/): fix embedding handler cleanup imports * refactor(openai.py): cleanup imports * fix(sagemaker/transformation.py): fix import * ci(config.yml): add circular import test to ci/cd
168 lines
6.1 KiB
Python
168 lines
6.1 KiB
Python
import json
|
|
from typing import List, Optional
|
|
|
|
import litellm
|
|
from litellm import verbose_logger
|
|
from litellm.types.llms.openai import (
|
|
ChatCompletionDeltaChunk,
|
|
ChatCompletionResponseMessage,
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionToolCallFunctionChunk,
|
|
ChatCompletionUsageBlock,
|
|
)
|
|
from litellm.types.utils import GenericStreamingChunk, ModelResponse, Usage
|
|
|
|
|
|
class ModelResponseIterator:
|
|
def __init__(self, streaming_response, sync_stream: bool):
|
|
self.streaming_response = streaming_response
|
|
|
|
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
|
try:
|
|
processed_chunk = litellm.ModelResponse(**chunk, stream=True) # type: ignore
|
|
|
|
text = ""
|
|
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
|
is_finished = False
|
|
finish_reason = ""
|
|
usage: Optional[ChatCompletionUsageBlock] = None
|
|
|
|
if processed_chunk.choices[0].delta.content is not None: # type: ignore
|
|
text = processed_chunk.choices[0].delta.content # type: ignore
|
|
|
|
if (
|
|
processed_chunk.choices[0].delta.tool_calls is not None # type: ignore
|
|
and len(processed_chunk.choices[0].delta.tool_calls) > 0 # type: ignore
|
|
and processed_chunk.choices[0].delta.tool_calls[0].function is not None # type: ignore
|
|
and processed_chunk.choices[0].delta.tool_calls[0].function.arguments # type: ignore
|
|
is not None
|
|
):
|
|
tool_use = ChatCompletionToolCallChunk(
|
|
id=processed_chunk.choices[0].delta.tool_calls[0].id, # type: ignore
|
|
type="function",
|
|
function=ChatCompletionToolCallFunctionChunk(
|
|
name=processed_chunk.choices[0]
|
|
.delta.tool_calls[0] # type: ignore
|
|
.function.name,
|
|
arguments=processed_chunk.choices[0]
|
|
.delta.tool_calls[0] # type: ignore
|
|
.function.arguments,
|
|
),
|
|
index=processed_chunk.choices[0].index,
|
|
)
|
|
|
|
if processed_chunk.choices[0].finish_reason is not None:
|
|
is_finished = True
|
|
finish_reason = processed_chunk.choices[0].finish_reason
|
|
|
|
usage_chunk: Optional[Usage] = getattr(processed_chunk, "usage", None)
|
|
if usage_chunk is not None:
|
|
|
|
usage = ChatCompletionUsageBlock(
|
|
prompt_tokens=usage_chunk.prompt_tokens,
|
|
completion_tokens=usage_chunk.completion_tokens,
|
|
total_tokens=usage_chunk.total_tokens,
|
|
)
|
|
|
|
return GenericStreamingChunk(
|
|
text=text,
|
|
tool_use=tool_use,
|
|
is_finished=is_finished,
|
|
finish_reason=finish_reason,
|
|
usage=usage,
|
|
index=0,
|
|
)
|
|
except json.JSONDecodeError:
|
|
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|
|
|
|
# Sync iterator
|
|
def __iter__(self):
|
|
self.response_iterator = self.streaming_response
|
|
return self
|
|
|
|
def __next__(self):
|
|
if not hasattr(self, "response_iterator"):
|
|
self.response_iterator = self.streaming_response
|
|
try:
|
|
chunk = self.response_iterator.__next__()
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
chunk = chunk.replace("data:", "")
|
|
chunk = chunk.strip()
|
|
if len(chunk) > 0:
|
|
json_chunk = json.loads(chunk)
|
|
return self.chunk_parser(chunk=json_chunk)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
verbose_logger.debug(
|
|
f"Error parsing chunk: {e},\nReceived chunk: {chunk}. Defaulting to empty chunk here."
|
|
)
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
|
|
# Async iterator
|
|
def __aiter__(self):
|
|
self.async_response_iterator = self.streaming_response.__aiter__()
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
chunk = await self.async_response_iterator.__anext__()
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
chunk = chunk.replace("data:", "")
|
|
chunk = chunk.strip()
|
|
if chunk == "[DONE]":
|
|
raise StopAsyncIteration
|
|
if len(chunk) > 0:
|
|
json_chunk = json.loads(chunk)
|
|
return self.chunk_parser(chunk=json_chunk)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
verbose_logger.debug(
|
|
f"Error parsing chunk: {e},\nReceived chunk: {chunk}. Defaulting to empty chunk here."
|
|
)
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|