mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
783 lines
24 KiB
Python
783 lines
24 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
import openai
|
|
import pytest
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import litellm
|
|
from litellm import completion, completion_cost, embedding
|
|
|
|
litellm.set_verbose = False
|
|
|
|
|
|
def test_openai_embedding():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
metadata={"anything": "good day"},
|
|
)
|
|
litellm_response = dict(response)
|
|
litellm_response_keys = set(litellm_response.keys())
|
|
litellm_response_keys.discard("_response_ms")
|
|
|
|
print(litellm_response_keys)
|
|
print("LiteLLM Response\n")
|
|
# print(litellm_response)
|
|
|
|
# same request with OpenAI 1.0+
|
|
import openai
|
|
|
|
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
|
response = client.embeddings.create(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
|
|
response = dict(response)
|
|
openai_response_keys = set(response.keys())
|
|
print(openai_response_keys)
|
|
assert (
|
|
litellm_response_keys == openai_response_keys
|
|
) # ENSURE the Keys in litellm response is exactly what the openai package returns
|
|
assert (
|
|
len(litellm_response["data"]) == 2
|
|
) # expect two embedding responses from litellm_response since input had two
|
|
print(openai_response_keys)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_openai_embedding()
|
|
|
|
|
|
def test_openai_embedding_3():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="text-embedding-3-small",
|
|
input=["good morning from litellm", "this is another item"],
|
|
metadata={"anything": "good day"},
|
|
dimensions=5,
|
|
)
|
|
print(f"response:", response)
|
|
litellm_response = dict(response)
|
|
litellm_response_keys = set(litellm_response.keys())
|
|
litellm_response_keys.discard("_response_ms")
|
|
|
|
print(litellm_response_keys)
|
|
print("LiteLLM Response\n")
|
|
# print(litellm_response)
|
|
|
|
# same request with OpenAI 1.0+
|
|
import openai
|
|
|
|
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
|
response = client.embeddings.create(
|
|
model="text-embedding-3-small",
|
|
input=["good morning from litellm", "this is another item"],
|
|
dimensions=5,
|
|
)
|
|
|
|
response = dict(response)
|
|
openai_response_keys = set(response.keys())
|
|
print(openai_response_keys)
|
|
assert (
|
|
litellm_response_keys == openai_response_keys
|
|
) # ENSURE the Keys in litellm response is exactly what the openai package returns
|
|
assert (
|
|
len(litellm_response["data"]) == 2
|
|
) # expect two embedding responses from litellm_response since input had two
|
|
print(openai_response_keys)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_openai_azure_embedding_simple():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(response)
|
|
response_keys = set(dict(response).keys())
|
|
response_keys.discard("_response_ms")
|
|
assert set(["usage", "model", "object", "data"]) == set(
|
|
response_keys
|
|
) # assert litellm response has expected keys from OpenAI embedding response
|
|
|
|
request_cost = litellm.completion_cost(completion_response=response)
|
|
|
|
print("Calculated request cost=", request_cost)
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_openai_azure_embedding_simple()
|
|
|
|
|
|
def test_openai_azure_embedding_timeouts():
|
|
try:
|
|
response = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm"],
|
|
timeout=0.00001,
|
|
)
|
|
print(response)
|
|
except openai.APITimeoutError:
|
|
print("Good job got timeout error!")
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Expected timeout error, did not get the correct error. Instead got {e}"
|
|
)
|
|
|
|
|
|
# test_openai_azure_embedding_timeouts()
|
|
|
|
|
|
def test_openai_embedding_timeouts():
|
|
try:
|
|
response = embedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm"],
|
|
timeout=0.00001,
|
|
)
|
|
print(response)
|
|
except openai.APITimeoutError:
|
|
print("Good job got OpenAI timeout error!")
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Expected timeout error, did not get the correct error. Instead got {e}"
|
|
)
|
|
|
|
|
|
# test_openai_embedding_timeouts()
|
|
|
|
|
|
def test_openai_azure_embedding():
|
|
try:
|
|
api_key = os.environ["AZURE_API_KEY"]
|
|
api_base = os.environ["AZURE_API_BASE"]
|
|
api_version = os.environ["AZURE_API_VERSION"]
|
|
|
|
os.environ["AZURE_API_VERSION"] = ""
|
|
os.environ["AZURE_API_BASE"] = ""
|
|
os.environ["AZURE_API_KEY"] = ""
|
|
|
|
response = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
)
|
|
print(response)
|
|
|
|
os.environ["AZURE_API_VERSION"] = api_version
|
|
os.environ["AZURE_API_BASE"] = api_base
|
|
os.environ["AZURE_API_KEY"] = api_key
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
os.environ.get("CIRCLE_OIDC_TOKEN") is None,
|
|
reason="Cannot run without being in CircleCI Runner",
|
|
)
|
|
def test_openai_azure_embedding_with_oidc_and_cf():
|
|
# TODO: Switch to our own Azure account, currently using ai.moda's account
|
|
os.environ["AZURE_TENANT_ID"] = "17c0a27a-1246-4aa1-a3b6-d294e80e783c"
|
|
os.environ["AZURE_CLIENT_ID"] = "4faf5422-b2bd-45e8-a6d7-46543a38acd0"
|
|
|
|
old_key = os.environ["AZURE_API_KEY"]
|
|
os.environ.pop("AZURE_API_KEY", None)
|
|
|
|
try:
|
|
response = embedding(
|
|
model="azure/text-embedding-ada-002",
|
|
input=["Hello"],
|
|
azure_ad_token="oidc/circleci/",
|
|
api_base="https://eastus2-litellm.openai.azure.com/",
|
|
api_version="2024-06-01",
|
|
)
|
|
print(response)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
finally:
|
|
os.environ["AZURE_API_KEY"] = old_key
|
|
|
|
|
|
def test_openai_azure_embedding_optional_arg(mocker):
|
|
mocked_create_embeddings = mocker.patch.object(
|
|
openai.resources.embeddings.Embeddings,
|
|
"create",
|
|
return_value=openai.types.create_embedding_response.CreateEmbeddingResponse(
|
|
data=[],
|
|
model="azure/test",
|
|
object="list",
|
|
usage=openai.types.create_embedding_response.Usage(
|
|
prompt_tokens=1, total_tokens=2
|
|
),
|
|
),
|
|
)
|
|
_ = litellm.embedding(
|
|
model="azure/test",
|
|
input=["test"],
|
|
api_version="test",
|
|
api_base="test",
|
|
azure_ad_token="test",
|
|
)
|
|
|
|
assert mocked_create_embeddings.called_once_with(
|
|
model="test", input=["test"], timeout=600
|
|
)
|
|
assert "azure_ad_token" not in mocked_create_embeddings.call_args.kwargs
|
|
|
|
|
|
# test_openai_azure_embedding()
|
|
|
|
# test_openai_embedding()
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_cohere_embedding(sync_mode):
|
|
try:
|
|
# litellm.set_verbose=True
|
|
data = {
|
|
"model": "embed-english-v2.0",
|
|
"input": ["good morning from litellm", "this is another item"],
|
|
"input_type": "search_query",
|
|
}
|
|
if sync_mode:
|
|
response = embedding(**data)
|
|
else:
|
|
response = await litellm.aembedding(**data)
|
|
print(f"response:", response)
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_cohere_embedding()
|
|
|
|
|
|
def test_cohere_embedding3():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="embed-english-v3.0",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response:", response)
|
|
|
|
custom_llm_provider = response._hidden_params["custom_llm_provider"]
|
|
|
|
assert custom_llm_provider == "cohere"
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_cohere_embedding3()
|
|
|
|
|
|
def test_bedrock_embedding_titan():
|
|
try:
|
|
# this tests if we support str input for bedrock embedding
|
|
litellm.set_verbose = True
|
|
litellm.enable_cache()
|
|
import time
|
|
|
|
current_time = str(time.time())
|
|
# DO NOT MAKE THE INPUT A LIST in this test
|
|
response = embedding(
|
|
model="bedrock/amazon.titan-embed-text-v1",
|
|
input=f"good morning from litellm, attempting to embed data {current_time}", # input should always be a string in this test
|
|
aws_region_name="us-west-2",
|
|
)
|
|
print(f"response:", response)
|
|
assert isinstance(
|
|
response["data"][0]["embedding"], list
|
|
), "Expected response to be a list"
|
|
print(f"type of first embedding:", type(response["data"][0]["embedding"][0]))
|
|
assert all(
|
|
isinstance(x, float) for x in response["data"][0]["embedding"]
|
|
), "Expected response to be a list of floats"
|
|
|
|
# this also tests if we can return a cache response for this scenario
|
|
import time
|
|
|
|
start_time = time.time()
|
|
|
|
response = embedding(
|
|
model="bedrock/amazon.titan-embed-text-v1",
|
|
input=f"good morning from litellm, attempting to embed data {current_time}", # input should always be a string in this test
|
|
)
|
|
print(response)
|
|
|
|
end_time = time.time()
|
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
|
|
|
assert end_time - start_time < 0.1
|
|
litellm.disable_cache()
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_bedrock_embedding_titan()
|
|
|
|
|
|
def test_bedrock_embedding_cohere():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = embedding(
|
|
model="cohere.embed-multilingual-v3",
|
|
input=[
|
|
"good morning from litellm, attempting to embed data",
|
|
"lets test a second string for good measure",
|
|
],
|
|
aws_region_name="os.environ/AWS_REGION_NAME_2",
|
|
)
|
|
assert isinstance(
|
|
response["data"][0]["embedding"], list
|
|
), "Expected response to be a list"
|
|
print(f"type of first embedding:", type(response["data"][0]["embedding"][0]))
|
|
assert all(
|
|
isinstance(x, float) for x in response["data"][0]["embedding"]
|
|
), "Expected response to be a list of floats"
|
|
# print(f"response:", response)
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_bedrock_embedding_cohere()
|
|
|
|
|
|
def test_demo_tokens_as_input_to_embeddings_fails_for_titan():
|
|
litellm.set_verbose = True
|
|
|
|
with pytest.raises(
|
|
litellm.BadRequestError,
|
|
match="BedrockException - Bedrock Embedding API input must be type str | List[str]",
|
|
):
|
|
litellm.embedding(model="amazon.titan-embed-text-v1", input=[[1]])
|
|
|
|
with pytest.raises(
|
|
litellm.BadRequestError,
|
|
match="BedrockException - Bedrock Embedding API input must be type str | List[str]",
|
|
):
|
|
litellm.embedding(
|
|
model="amazon.titan-embed-text-v1",
|
|
input=[1],
|
|
)
|
|
|
|
|
|
# comment out hf tests - since hf endpoints are unstable
|
|
def test_hf_embedding():
|
|
try:
|
|
# huggingface/microsoft/codebert-base
|
|
# huggingface/facebook/bart-large
|
|
response = embedding(
|
|
model="huggingface/sentence-transformers/all-MiniLM-L6-v2",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response:", response)
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except Exception as e:
|
|
# Note: Huggingface inference API is unstable and fails with "model loading errors all the time"
|
|
pass
|
|
|
|
|
|
# test_hf_embedding()
|
|
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
|
|
def tgi_mock_post(*args, **kwargs):
|
|
import json
|
|
|
|
expected_data = {
|
|
"inputs": {
|
|
"source_sentence": "good morning from litellm",
|
|
"sentences": ["this is another item"],
|
|
}
|
|
}
|
|
assert (
|
|
json.loads(kwargs["data"]) == expected_data
|
|
), "Data does not match the expected data"
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = [0.7708950042724609]
|
|
return mock_response
|
|
|
|
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_hf_embedding_sentence_sim(sync_mode):
|
|
try:
|
|
# huggingface/microsoft/codebert-base
|
|
# huggingface/facebook/bart-large
|
|
if sync_mode is True:
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
else:
|
|
client = AsyncHTTPHandler(concurrent_limit=1)
|
|
with patch.object(client, "post", side_effect=tgi_mock_post) as mock_client:
|
|
data = {
|
|
"model": "huggingface/TaylorAI/bge-micro-v2",
|
|
"input": ["good morning from litellm", "this is another item"],
|
|
"client": client,
|
|
}
|
|
if sync_mode is True:
|
|
response = embedding(**data)
|
|
else:
|
|
response = await litellm.aembedding(**data)
|
|
|
|
print(f"response:", response)
|
|
|
|
mock_client.assert_called_once()
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
|
|
except Exception as e:
|
|
# Note: Huggingface inference API is unstable and fails with "model loading errors all the time"
|
|
raise e
|
|
|
|
|
|
# test async embeddings
|
|
def test_aembedding():
|
|
try:
|
|
import asyncio
|
|
|
|
async def embedding_call():
|
|
try:
|
|
response = await litellm.aembedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(response)
|
|
return response
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
response = asyncio.run(embedding_call())
|
|
print("Before caclulating cost, response", response)
|
|
|
|
cost = litellm.completion_cost(completion_response=response)
|
|
|
|
print("COST=", cost)
|
|
assert cost == float("1e-06")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_aembedding()
|
|
|
|
|
|
def test_aembedding_azure():
|
|
try:
|
|
import asyncio
|
|
|
|
async def embedding_call():
|
|
try:
|
|
response = await litellm.aembedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(response)
|
|
|
|
print(
|
|
"hidden params - custom_llm_provider",
|
|
response._hidden_params["custom_llm_provider"],
|
|
)
|
|
assert response._hidden_params["custom_llm_provider"] == "azure"
|
|
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
asyncio.run(embedding_call())
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_aembedding_azure()
|
|
|
|
|
|
@pytest.mark.skip(reason="AWS Suspended Account")
|
|
def test_sagemaker_embeddings():
|
|
try:
|
|
response = litellm.embedding(
|
|
model="sagemaker/berri-benchmarking-gpt-j-6b-fp16",
|
|
input=["good morning from litellm", "this is another item"],
|
|
input_cost_per_second=0.000420,
|
|
)
|
|
print(f"response: {response}")
|
|
cost = completion_cost(completion_response=response)
|
|
assert (
|
|
cost > 0.0 and cost < 1.0
|
|
) # should never be > $1 for a single embedding call
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.skip(reason="AWS Suspended Account")
|
|
@pytest.mark.asyncio
|
|
async def test_sagemaker_aembeddings():
|
|
try:
|
|
response = await litellm.aembedding(
|
|
model="sagemaker/berri-benchmarking-gpt-j-6b-fp16",
|
|
input=["good morning from litellm", "this is another item"],
|
|
input_cost_per_second=0.000420,
|
|
)
|
|
print(f"response: {response}")
|
|
cost = completion_cost(completion_response=response)
|
|
assert (
|
|
cost > 0.0 and cost < 1.0
|
|
) # should never be > $1 for a single embedding call
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_mistral_embeddings():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = litellm.embedding(
|
|
model="mistral/mistral-embed",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(f"response: {response}")
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_watsonx_embeddings():
|
|
|
|
def mock_wx_embed_request(method: str, url: str, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"model_id": "ibm/slate-30m-english-rtrvr",
|
|
"created_at": "2024-01-01T00:00:00.00Z",
|
|
"results": [{"embedding": [0.0] * 254}],
|
|
"input_token_count": 8,
|
|
}
|
|
return mock_response
|
|
|
|
try:
|
|
litellm.set_verbose = True
|
|
with patch("requests.request", side_effect=mock_wx_embed_request):
|
|
response = litellm.embedding(
|
|
model="watsonx/ibm/slate-30m-english-rtrvr",
|
|
input=["good morning from litellm"],
|
|
token="secret-token",
|
|
)
|
|
print(f"response: {response}")
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_watsonx_aembeddings():
|
|
|
|
def mock_async_client(*args, **kwargs):
|
|
|
|
mocked_client = MagicMock()
|
|
|
|
async def mock_send(request, *args, stream: bool = False, **kwags):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"model_id": "ibm/slate-30m-english-rtrvr",
|
|
"created_at": "2024-01-01T00:00:00.00Z",
|
|
"results": [{"embedding": [0.0] * 254}],
|
|
"input_token_count": 8,
|
|
}
|
|
mock_response.is_error = False
|
|
return mock_response
|
|
|
|
mocked_client.send = mock_send
|
|
|
|
return mocked_client
|
|
|
|
try:
|
|
litellm.set_verbose = True
|
|
with patch("httpx.AsyncClient", side_effect=mock_async_client):
|
|
response = await litellm.aembedding(
|
|
model="watsonx/ibm/slate-30m-english-rtrvr",
|
|
input=["good morning from litellm"],
|
|
token="secret-token",
|
|
)
|
|
print(f"response: {response}")
|
|
assert isinstance(response.usage, litellm.Usage)
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_mistral_embeddings()
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="Community maintained embedding provider - they are quite unstable"
|
|
)
|
|
def test_voyage_embeddings():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = litellm.embedding(
|
|
model="voyage/voyage-01",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(f"response: {response}")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_triton_embeddings():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = await litellm.aembedding(
|
|
model="triton/my-triton-model",
|
|
api_base="https://exampleopenaiendpoint-production.up.railway.app/triton/embeddings",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(f"response: {response}")
|
|
|
|
# stubbed endpoint is setup to return this
|
|
assert response.data[0]["embedding"] == [0.1, 0.2]
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_databricks_embeddings(sync_mode):
|
|
try:
|
|
litellm.set_verbose = True
|
|
litellm.drop_params = True
|
|
|
|
if sync_mode:
|
|
response = litellm.embedding(
|
|
model="databricks/databricks-bge-large-en",
|
|
input=["good morning from litellm"],
|
|
instruction="Represent this sentence for searching relevant passages:",
|
|
)
|
|
else:
|
|
response = await litellm.aembedding(
|
|
model="databricks/databricks-bge-large-en",
|
|
input=["good morning from litellm"],
|
|
instruction="Represent this sentence for searching relevant passages:",
|
|
)
|
|
|
|
print(f"response: {response}")
|
|
|
|
openai.types.CreateEmbeddingResponse.model_validate(
|
|
response.model_dump(), strict=True
|
|
)
|
|
# stubbed endpoint is setup to return this
|
|
# assert response.data[0]["embedding"] == [0.1, 0.2, 0.3]
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_voyage_embeddings()
|
|
# def test_xinference_embeddings():
|
|
# try:
|
|
# litellm.set_verbose = True
|
|
# response = litellm.embedding(
|
|
# model="xinference/bge-base-en",
|
|
# input=["good morning from litellm"],
|
|
# )
|
|
# print(f"response: {response}")
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
# test_xinference_embeddings()
|
|
|
|
# test_sagemaker_embeddings()
|
|
# def local_proxy_embeddings():
|
|
# litellm.set_verbose=True
|
|
# response = embedding(
|
|
# model="openai/custom_embedding",
|
|
# input=["good morning from litellm"],
|
|
# api_base="http://0.0.0.0:8000/"
|
|
# )
|
|
# print(response)
|
|
|
|
# local_proxy_embeddings()
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_hf_embedddings_with_optional_params(sync_mode):
|
|
litellm.set_verbose = True
|
|
|
|
if sync_mode:
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
mock_obj = MagicMock()
|
|
else:
|
|
client = AsyncHTTPHandler(concurrent_limit=1)
|
|
mock_obj = AsyncMock()
|
|
|
|
with patch.object(client, "post", new=mock_obj) as mock_client:
|
|
try:
|
|
if sync_mode:
|
|
response = embedding(
|
|
model="huggingface/jinaai/jina-embeddings-v2-small-en",
|
|
input=["good morning from litellm"],
|
|
wait_for_model=True,
|
|
client=client,
|
|
)
|
|
else:
|
|
response = await litellm.aembedding(
|
|
model="huggingface/jinaai/jina-embeddings-v2-small-en",
|
|
input=["good morning from litellm"],
|
|
wait_for_model=True,
|
|
client=client,
|
|
)
|
|
except Exception:
|
|
pass
|
|
|
|
mock_client.assert_called_once()
|
|
|
|
print(f"mock_client.call_args.kwargs: {mock_client.call_args.kwargs}")
|
|
assert "options" in mock_client.call_args.kwargs["data"]
|
|
json_data = json.loads(mock_client.call_args.kwargs["data"])
|
|
assert "wait_for_model" in json_data["options"]
|
|
assert json_data["options"]["wait_for_model"] is True
|