litellm-mirror/litellm/llms/AzureOpenAI/chat/gpt_transformation.py
Krish Dholakia 54ebdbf7ce
LiteLLM Minor Fixes & Improvements (10/15/2024) (#6242)
* feat(litellm_pre_call_utils.py): support forwarding request headers to backend llm api

* fix(litellm_pre_call_utils.py): handle custom litellm key header

* test(router_code_coverage.py): check if all router functions are dire… (#6186)

* test(router_code_coverage.py): check if all router functions are directly tested

prevent regressions

* docs(configs.md): document all environment variables (#6185)

* docs: make it easier to find anthropic/openai prompt caching doc

* aded codecov yml (#6207)

* fix codecov.yaml

* run ci/cd again

* (refactor) caching use LLMCachingHandler for async_get_cache and set_cache  (#6208)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered

* (feat) prometheus have well defined latency buckets (#6211)

* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS

* fix prom testing

* fix config.yml

* (refactor caching) use LLMCachingHandler for caching streaming responses  (#6210)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* bump (#6187)

* update code cov yaml

* fix config.yml

* add caching component to code cov

* fix config.yml ci/cd

* add coverage for proxy auth

* (refactor caching) use common `_retrieve_from_cache` helper  (#6212)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* refactor - use _retrieve_from_cache

* refactor use _convert_cached_result_to_model_response

* fix linting errors

* bump: version 1.49.2 → 1.49.3

* fix code cov components

* test(test_router_helpers.py): add router component unit tests

* test: add additional router tests

* test: add more router testing

* test: add more router testing + more mock functions

* ci(router_code_coverage.py): fix check

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* bump: version 1.49.3 → 1.49.4

* (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling

* (refactor) OTEL - use safe_set_attribute for setting attributes (#6226)

* otel - use safe_set_attribute for setting attributes

* fix OTEL only use safe_set_attribute

* (fix) prompt caching cost calculation OpenAI, Azure OpenAI  (#6231)

* fix prompt caching cost calculation

* fix testing for prompt cache cost calc

* fix(allowed_model_region): allow us as allowed region (#6234)

* test(router_code_coverage.py): check if all router functions are dire… (#6186)

* test(router_code_coverage.py): check if all router functions are directly tested

prevent regressions

* docs(configs.md): document all environment variables (#6185)

* docs: make it easier to find anthropic/openai prompt caching doc

* aded codecov yml (#6207)

* fix codecov.yaml

* run ci/cd again

* (refactor) caching use LLMCachingHandler for async_get_cache and set_cache  (#6208)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered

* (feat) prometheus have well defined latency buckets (#6211)

* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS

* fix prom testing

* fix config.yml

* (refactor caching) use LLMCachingHandler for caching streaming responses  (#6210)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* bump (#6187)

* update code cov yaml

* fix config.yml

* add caching component to code cov

* fix config.yml ci/cd

* add coverage for proxy auth

* (refactor caching) use common `_retrieve_from_cache` helper  (#6212)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* refactor - use _retrieve_from_cache

* refactor use _convert_cached_result_to_model_response

* fix linting errors

* bump: version 1.49.2 → 1.49.3

* fix code cov components

* test(test_router_helpers.py): add router component unit tests

* test: add additional router tests

* test: add more router testing

* test: add more router testing + more mock functions

* ci(router_code_coverage.py): fix check

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* bump: version 1.49.3 → 1.49.4

* (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling

* (refactor) OTEL - use safe_set_attribute for setting attributes (#6226)

* otel - use safe_set_attribute for setting attributes

* fix OTEL only use safe_set_attribute

* fix(allowed_model_region): allow us as allowed region

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix(litellm_pre_call_utils.py): support 'us' region routing + fix header forwarding to filter on `x-` headers

* docs(customer_routing.md): fix region-based routing example

* feat(azure.py): handle empty arguments function call - azure

Closes https://github.com/BerriAI/litellm/issues/6241

* feat(guardrails_ai.py): support guardrails ai integration

Adds support for on-prem guardrails via guardrails ai

* fix(proxy/utils.py): prevent sql injection attack

Fixes https://huntr.com/bounties/a4f6d357-5b44-4e00-9cac-f1cc351211d2

* fix: fix linting errors

* fix(litellm_pre_call_utils.py): don't log litellm api key in proxy server request headers

* fix(litellm_pre_call_utils.py): don't forward stainless headers

* docs(guardrails_ai.md): add guardrails ai quick start to docs

* test: handle flaky test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
Co-authored-by: Marcus Elwin <marcus@elwin.com>
2024-10-16 07:32:06 -07:00

250 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import types
from typing import List, Optional, Type, Union
import litellm
from ....exceptions import UnsupportedParamsError
from ....types.llms.openai import (
AllMessageValues,
ChatCompletionToolChoiceFunctionParam,
ChatCompletionToolChoiceObjectParam,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
)
from ...prompt_templates.factory import convert_to_azure_openai_messages
class AzureOpenAIConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"temperature",
"n",
"stream",
"stream_options",
"stop",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"function_call",
"functions",
"tools",
"tool_choice",
"top_p",
"logprobs",
"top_logprobs",
"response_format",
"seed",
"extra_headers",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
api_version: str, # Y-M-D-{optional}
drop_params,
) -> dict:
supported_openai_params = self.get_supported_openai_params()
api_version_times = api_version.split("-")
api_version_year = api_version_times[0]
api_version_month = api_version_times[1]
api_version_day = api_version_times[2]
for param, value in non_default_params.items():
if param == "tool_choice":
"""
This parameter requires API version 2023-12-01-preview or later
tool_choice='required' is not supported as of 2024-05-01-preview
"""
## check if api version supports this param ##
if (
api_version_year < "2023"
or (api_version_year == "2023" and api_version_month < "12")
or (
api_version_year == "2023"
and api_version_month == "12"
and api_version_day < "01"
)
):
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
)
elif value == "required" and (
api_version_year == "2024" and api_version_month <= "05"
): ## check if tool_choice value is supported ##
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
)
else:
optional_params["tool_choice"] = value
elif param == "response_format" and isinstance(value, dict):
json_schema: Optional[dict] = None
schema_name: str = ""
if "response_schema" in value:
json_schema = value["response_schema"]
schema_name = "json_tool_call"
elif "json_schema" in value:
json_schema = value["json_schema"]["schema"]
schema_name = value["json_schema"]["name"]
"""
Follow similar approach to anthropic - translate to a single tool call.
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
- You usually want to provide a single tool
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
"""
if json_schema is not None and (
(api_version_year <= "2024" and api_version_month < "08")
or "gpt-4o" not in model
): # azure api version "2024-08-01-preview" onwards supports 'json_schema' only for gpt-4o
_tool_choice = ChatCompletionToolChoiceObjectParam(
type="function",
function=ChatCompletionToolChoiceFunctionParam(
name=schema_name
),
)
_tool = ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name=schema_name, parameters=json_schema
),
)
optional_params["tools"] = [_tool]
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
else:
optional_params["response_format"] = value
elif param == "max_completion_tokens":
# TODO - Azure OpenAI will probably add support for this, we should pass it through when Azure adds support
optional_params["max_tokens"] = value
elif param in supported_openai_params:
optional_params[param] = value
return optional_params
@classmethod
def transform_request(
cls, model: str, messages: List[AllMessageValues], optional_params: dict
) -> dict:
messages = convert_to_azure_openai_messages(messages)
return {
"model": model,
"messages": messages,
**optional_params,
}
def get_mapped_special_auth_params(self) -> dict:
return {"token": "azure_ad_token"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "token":
optional_params["azure_ad_token"] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return ["europe", "sweden", "switzerland", "france", "uk"]
def get_us_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return [
"us",
"eastus",
"eastus2",
"eastus2euap",
"eastus3",
"southcentralus",
"westus",
"westus2",
"westus3",
"westus4",
]