litellm-mirror/litellm/integrations/prompt_layer.py
2023-08-28 09:20:50 -07:00

49 lines
1.7 KiB
Python

#### What this does ####
# On success, logs events to Promptlayer
import dotenv, os
import requests
import requests
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
class PromptLayerLogger:
# Class variables or attributes
def __init__(self):
# Instance variables
self.key = os.getenv("PROMPTLAYER_API_KEY")
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
# Method definition
try:
print_verbose(
f"Prompt Layer Logging - Enters logging function for model {kwargs}"
)
request_response = requests.post(
"https://api.promptlayer.com/rest/track-request",
json={
"function_name": "openai.ChatCompletion.create",
"kwargs": kwargs,
"tags": ["hello", "world"],
"request_response": dict(
response_obj
), # TODO: Check if we need a dict
"request_start_time": int(start_time.timestamp()),
"request_end_time": int(end_time.timestamp()),
"api_key": self.key,
# Optional params for PromptLayer
# "prompt_id": "<PROMPT ID>",
# "prompt_input_variables": "<Dictionary of variables for prompt>",
# "prompt_version":1,
},
)
print_verbose(
f"Prompt Layer Logging - final response object: {request_response}"
)
except:
# traceback.print_exc()
print_verbose(f"Prompt Layer Error - {traceback.format_exc()}")
pass